Surface modification plays a pivotal role in tailoring the functionalities of a solid material. Introduction of antimicrobial function on material surfaces can provide additional protection against life‐threatening bacterial infections. Herein, a simple and universal surface modification method based on surface adhesion and electrostatic interaction of phytic acid (PA) is developed. PA is first functionalized with Prussian blue nanoparticles (PB NPs) via metal chelation and then conjugates with cationic polymers (CPs) through electrostatic interaction. With the aid of surface adherent PA and gravitation effect, the as‐formed PA–PB–CP network aggregates are deposited on the solid materials in a substrate‐independent manner. Synergistic bactericidal effects of “contact‐killing” induced by the CPs and localized photothermal effect caused by the PB NPs endow the substrates with strong antibacterial performance. Membrane integrity, enzymatic activity, and metabolism function of the bacteria are disturbed in contact with the PA–PB–CP coating under near‐infrared (NIR) irradiation. The PA–PB–CP modified biomedical implant surfaces exhibit good biocompatibility and synergistic antibacterial effect under NIR irradiation, and eliminate the adhered bacteria both in vitro and in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.