Grain quality involves the appearance, nutritional, and safety attributes of grains. With the improvement of people’s living standards, problems pertaining to the quality of grains have received greater attention. Modern quality detection techniques feature unique advantages including rapidness, non-destructiveness, accuracy, and efficiency in detecting grain quality. This review summarizes research progress of these techniques in detection of quality indices of grains. Particularly, the review focuses on detection techniques based on physical properties including acoustic, optical, thermal, electrical, and mechanical properties, and those simulating sensory analysis such as electronic noses, electronic tongues, and electronic eyes. According to the current technological development and application, the challenges and prospects of these techniques are demonstrated.
The field mobile platform is an important tool for high-throughput phenotype monitoring. To overcome problems in existing field-based crop phenotyping platforms, including limited application scope and low stability, a rolling adjustment method for the wheel tread was proposed. A self-propelled three-wheeled field-based crop phenotyping platform with variable wheel tread and height above ground was developed, which enabled phenotypic information of different dry crops in different development stages. A three-dimensional model of the platform was established using Pro/E; ANSYS and ADAMS were used for static and dynamic performance. Results show that when running on flat ground, the platform has a vibration acceleration lower than 0.5 m/s2. When climbing over an obstacle with a height of 100 mm, the vibration amplitude of the platform is 88.7 mm. The climbing angle is not less than 15°. Field tests imply that the normalized difference vegetation index (NDVI) and the ratio vegetation index (RVI) of a canopy measured using crop growth sensors mounted on the above platform show favorable linear correlations with those measured using a handheld analytical spectral device (ASD). Their R2 values are 0.6052 and 0.6093 and root-mean-square errors (RMSEs) are 0.0487 and 0.1521, respectively. The field-based crop phenotyping platform provides a carrier for high-throughput acquisition of crop phenotypic information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.