Small nucleolar RNAs (snoRNAs) are an abundant group of noncoding RNAs mainly involved in the post-transcriptional modifications of rRNAs in eukaryotes. In this study, a large-scale genome-wide analysis of the two major families of snoRNA genes in the fruit fly Drosophila melanogaster has been performed using experimental and computational RNomics methods. Two hundred and twelve gene variants, encoding 56 box H/ACA and 63 box C/D snoRNAs, were identified, of which 57 novel snoRNAs have been reported for the first time. These snoRNAs were predicted to guide a total of 147 methylations and pseudouridylations on rRNAs and snRNAs, showing a more comprehensive pattern of rRNA modification in the fruit fly. With the exception of nine, all the snoRNAs identified to date in D. melanogaster are intron encoded. Remarkably, the genomic organization of the snoRNAs is characteristic of 8 dUhg genes and 17 intronic gene clusters, demonstrating that distinct organizations dominate the expression of the two families of snoRNAs in the fruit fly. Of the 267 introns in the host genes, more than half have been identified as host introns for coding of snoRNAs. In contrast to mammals, the variation in size of the host introns is mainly due to differences in the number of snoRNAs they contain. These results demonstrate the extensive utilization of introns for coding of snoRNAs in the host genes and shed light on further research of other noncoding RNA genes in the large introns of the Drosophila genome.
The oriental fruit fly, Bactrocera dorsalis, is a devastating fruit fly pest in tropical and sub-tropical countries. Like other insects, this fly uses its chemosensory system to efficiently interact with its environment. However, our understanding of the molecular components comprising B. dorsalis chemosensory system is limited. Using next generation sequencing technologies, we sequenced the transcriptome of four B. dorsalis developmental stages: egg, larva, pupa and adult chemosensory tissues. A total of 31 candidate odorant binding proteins (OBPs), 4 candidate chemosensory proteins (CSPs), 23 candidate odorant receptors (ORs), 11 candidate ionotropic receptors (IRs), 6 candidate gustatory receptors (GRs) and 3 candidate sensory neuron membrane proteins (SNMPs) were identified. The tissue distributions of the OBP and CSP transcripts were determined by RT-PCR and a subset of nine genes were further characterized. The predicted proteins from these genes shared high sequence similarity to Drosophila melanogaster pheromone binding protein related proteins (PBPRPs). Interestingly, one OBP (BdorOBP19c) was exclusively expressed in the sex pheromone glands of mature females. RT-PCR was also used to compare the expression of the candidate genes in the antennae of male and female B. dorsalis adults. These antennae-enriched OBPs, CSPs, ORs, IRs and SNMPs could play a role in the detection of pheromones and general odorants and thus could be useful target genes for the integrated pest management of B. dorsalis and other agricultural pests.
Background: Immunotherapy is effective in treating unresectable esophageal squamous cell carcinoma (ESCC), but little is known about its role in the preoperative setting. The aim of this study was to evaluate the safety, feasibility and efficacy of neoadjuvant treatment with camrelizumab plus chemotherapy in locally advanced ESCC.Methods: Patients diagnosed with locally advanced ESCC were retrospectively included if they had received neoadjuvant camrelizumab plus nab-paclitaxel and S1 capsule followed by radical esophagectomy between November, 2019 and June, 2020 at Sun Yat-sen University Cancer Center. Primary endpoints were safety and feasibility. In addition, pathological response and the relationship between tumor immune microenvironment (TIME)/tumor mutational burden (TMB) and treatment response were also investigated.Results: Twelve patients were included and they all received three courses of preoperative treatment with camrelizumab plus nab-paclitaxel/S1. No grade 3 or higher toxicities occurred. No surgical delay or perioperative death was reported. Nine patients (75%) responded to the treatment, four with a complete pathological response (pCR) and five with a major pathological response (MPR). Neither programmed death-ligand 1 (PD-L1) expression nor TMB was correlated with treatment response. TIME analysis revealed that a higher abundance of CD56dim natural killer cells was associated with better pathological response in the primary tumor, while lower density of M2-tumor-associated macrophages was associated with better pathological response in the lymph nodes (LNs).Conclusions: Neoadjuvant camrelizumab plus nab-paclitaxel and S1 is safe, feasible and effective in locally advanced ESCC and is worth further investigation.
Olfactory transduction is a process by which olfactory sensory neurons (OSNs) transform odor information into neuronal electrical signals. This process begins with the binding of odor molecules to receptor proteins on olfactory receptor neuron (ORN) dendrites. The major molecular components involved in olfaction include odorant-binding proteins (OBPs), chemosensory proteins (CSPs), odorant receptors (ORs), gustatory receptors (GRs), ionotropic receptors (IRs), sensory neuron membrane proteins (SNMPs) and odorant-degrading enzymes (ODEs). More importantly, as potential molecular targets, chemosensory proteins are used to identify novel attractants or repellants for environmental-friendly pest management. In this study we analyzed the transcriptome of the flea beetle, Phyllotreta striolata (Coleoptera, Chrysomelidae), a serious pest of Brassicaceae crops, to better understand the molecular mechanisms of olfactory recognition in this pest. The analysis of transcriptomes from the antennae and terminal abdomens of specimens of both sexes identified transcripts from several key molecular components of chemoreception including 73 ORs, 36 GRs, 49 IRs, 2 SNMPs, 32 OBPs, 8 CSPs, and four candidate odorant degrading enzymes (ODEs): 143 cytochrome P450s (CYPs), 68 esterases (ESTs), 27 glutathione S-transferases (GSTs) and 8 UDP-glycosyltransferases (UGTs). Bioinformatic analyses indicated that a large number of chemosensory genes were up-regulated in the antennae. This was consistent with a potential role in olfaction. To validate the differential abundance analyses, the expression of 19 genes encoding various ORs, CSPs, and OBPs was assessed via qRT-PCR between non-chemosensory tissue and antennae. Consistent with the bioinformatic analyses, transcripts for all of the genes in the qRT-PCR subset were elevated in antennae. These findings provide the first insights into the molecular basis of chemoreception in the striped flea beetle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.