Overexpression of the global regulator LaeA in a marine-derived fungal strain of Penicillium dipodomyis YJ-11 induced obvious morphological changes and metabolic variations. Further chemical investigation of the mutant strain afforded a series of sorbicillinoids including two new ones named 10,11-dihydrobislongiquinolide (1) and 10,11,16,17-tetrahydrobislongiquinolide (2), as well as four known analogues, bislongiquinolide (3), 16,17-dihydrobislongiquinolide (4), sohirnone A (5), and 2′,3′-dihydrosorbicillin (6). The results support that the global regulator LaeA is a useful tool in activating silent gene clusters in Penicillium strains to obtain previously undiscovered compounds.
Flavonoid metabolism shows very strong plasticity in plant development and coping with the changing environment. Flavonoid biosynthesis is regulated by many metabolic pathways, including transcriptional regulation, post-transcriptional control, post-translational regulationand epigenetic regulation. miRNA is a form of endogenous noncoding single-strand small molecule RNA that primarily regulates the expression of target genes horizontally after transcription through splicing and translational suppression. It also plays an important role in regulating plant growth and development, secondary metabolism and biotic and abiotic stress. miRNA can regulate the formation of flavonoids by acting on structural genes or indirectly by using an MBW transcription complex comprising MYB-bHLH-WD40. This study summarizes the biosynthesis and mechanisms of miRNA, and provides a summary of the mechanisms of miRNAs involved in production of flavonoids, in order to elucidate the biosynthesis pathway and complex regulatory network of plant flavonoids. We aim to provide new insights into improving the content of flavonoid active ingredients in plants.
Ginkgo biloba L. is an ancient relict plant with rich pharmacological activity and nutritional value, and its main physiologically active components are flavonoids and terpene lactones. The bZIP gene family is one of the largest gene families in plants and regulates many processes including pathogen defense, secondary metabolism, stress response, seed maturation, and flower development. In this study, genome-wide distribution of the bZIP transcription factors was screened from G. biloba database in silico analysis. A total of 40 bZIP genes were identified in G. biloba and were divided into 10 subclasses. GbbZIP members in the same group share a similar gene structure, number of introns and exons, and motif distribution. Analysis of tissue expression pattern based on transcriptome indicated that GbbZIP08 and GbbZIP15 were most highly expressed in mature leaf. And the expression level of GbbZIP13 was high in all eight tissues. Correlation analysis and phylogenetic tree analysis suggested that GbbZIP08 and GbbZIP15 might be involved in the flavonoid biosynthesis. The transcriptional levels of 20 GbbZIP genes after SA, MeJA, and low temperature treatment were analyzed by qRT-PCR. The expression level of GbbZIP08 was significantly upregulated under 4°C. Protein–protein interaction network analysis indicated that GbbZIP09 might participate in seed germination by interacting with GbbZIP32. Based on transcriptome and degradome data, we found that 32 out of 117 miRNAs were annotated to 17 miRNA families. The results of this study may provide a theoretical foundation for the functional validation of GbbZIP genes in the future.
NAC (NAM, ATAF, CUC2) transcription factors constitute one of the largest families of plant-specific transcription factors with important roles in plant growth and development and in biotic and abiotic stresses.• The physicochemical properties, gene structure, cis-acting elements and expression patterns of NAC transcription factors in Ginkgo biloba were analysed using bioinformatics, and expression of this gene family was analysed via quantitative reverse transcription PCR.• The family of G. biloba NAC transcription factors had 50 members, distributed on 12 chromosomes and divided into 11 groups. Members in the same group share a similar gene structure and motif distribution. Transcriptome data analysis of G. biloba showed that 35 genes were expressed in eight tissues. Correlation analysis suggested that GbNAC007 and GNAC008 might be involved in flavonoid biosynthesis. Expression levels of 12 GbNACs under cold, het, and salt stresses were analysed. Results indicate that NAC transcription factors play an important role in response to abiotic stresses.• This study provides a reference for the functional analysis of the G. biloba family of NAC transcription factors, as well as a resource for studies on the involvement of this family in responses to abiotic stresses and flavonoid biosynthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.