N-Acetylcysteine (NAC), a cysteine prodrug and glutathione (GSH) precursor, has been used for several decades in clinical therapeutic practices as a mucolytic agent and for the treatment of disorders associated with GSH deficiency. Other therapeutic activities of NAC include inhibition of inflammation/NF-κB signaling and expression of proinflammatory cytokines. N-Acetylcysteine is also a nonantibiotic compound possessing antimicrobial property and exerts anticarcinogenic and antimutagenic effects against certain types of cancer. Recently, studies describing potentially important biological and pharmacological activities of NAC have stimulated interests in using NAC-based therapeutics for oral health care. The present review focused on the biological activities of NAC and its potential oral applications. The potential side effects of NAC and formulations for drug delivery were also discussed, with the intent of advancing NAC-associated treatment modalities in oral medicine.
PurposeTo investigate the involvement of intrinsic mitochondrial apoptosis in dental monomer-induced cytotoxicity and the influences of N-acetyl cysteine (NAC) on this process.MethodsHuman dental pulp cells (hDPCs) were exposed to several dental monomers in the absence or presence of NAC, and cell viability, intracellular redox balance, morphology and function of mitochondria and key indicators of intrinsic mitochondrial apoptosis were evaluated using various commercial kits.ResultsDental monomers exerted dose-dependent cytotoxic effects on hDPCs. Concomitant to the over-production of reactive oxygen species (ROS) and depletion of glutathione (GSH), differential changes in activities of superoxide dismutase, glutathione peroxidase, and catalase were detected. Apoptosis, as indicated by positive Annexin V/propidium iodide (PI) staining and activation of caspase-3, was observed after dental monomer treatment. Dental monomers impaired the morphology and function of mitochondria, and induced intrinsic mitochondrial apoptosis in hDPCs via up-regulation of p53, Bax and cleaved caspase-3, and down-regulation of Bcl-2. NAC restored cell viability, relieved oxidative stress and blocked the apoptotic effects of dental monomers.ConclusionsDental monomers induced oxidative stress and mitochondrial intrinsic apoptosis in hDPCs. NAC could reduce the oxidative stress and thus protect hDPCs against dental monomer-induced apoptosis.
BackgroundThe reconstruction of bone defects is often impaired by radiotherapy since bone quality is compromised by radiation. This study aims to investigate the therapeutic efficacy of the composite cell sheets-bone marrow mesenchymal stem cell (BMSC) sheets cocultured with endothelial progenitor cells (EPCs)-in the healing of irradiated bone defects and the biological effects of EPCs on the osteogenic properties of BMSC sheets.MethodsBMSCs and EPCs were isolated from rat bone marrow. BMSCs were used to form cell sheets by the vitamin C inducing method. EPCs were seeded on BMSC sheets to make EPCs–BMSC sheets. Osteogenesis of EPCs–BMSC sheets and BMSC sheets were tested. In vitro osteogenesis tests included ALP, Alizarin Red S, Sirius Red staining, qRT-PCR and Western blot analysis after 3 and 7 days of osteogenic incubation. Subcutaneous osteogenesis was tested by H&E staining and immunohistochemical staining 8 weeks after transplantation. EPCs–BMSC sheets and BMSC sheets were used in the 3 mm defects of non-irradiated and irradiated rat tibias. Micro-CT and histological analysis were used to test the healing of bone defects 4 and 8 weeks after transplantation.ResultsEPCs–BMSC sheets showed enhanced osteogenic differentiation in vitro with increased expression of osteoblastic markers and osteogenesis related staining compared with BMSC sheets. In subcutaneous osteogenesis test, EPCs–BMSC sheets formed larger areas of new bone and blood vessels. The EPCs–BMSC group had the highest volume of newly formed bone in the defect area of irradiated tibias.ConclusionsEPCs improved the osteogenic differentiation of BMSC Sheets and enhanced the ectopic bone formation. EPCs–BMSC sheets promoted bone healing in irradiated rat tibias. EPCs–BMSC sheets are potentially useful in the reconstruction of bone defect after radiotherapy.Electronic supplementary materialThe online version of this article (10.1186/s12967-018-1517-4) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.