Polyplexes between siRNA and poly(ethylene imine) (PEI) derivatives are promising nonviral carriers for siRNA. The polyplex stability is of critical importance for efficient siRNA delivery to the cytoplasm. Here, we investigate the effect of PEGylation at a constant ratio ( approximately 50%) on the biophysical properties of the polyplexes. Particle size, zeta potential, and stability against heparin as well as RNase digestion and reporter gene knockdown under in vitro conditions of different siRNA polyplexes were characterized. Stability and size of siRNA polyplexes were clearly influenced by PEI-PEG structure, and high degrees of substitution such as PEI(25k)-g-PEG(550)(30) resulted in large (300-400 nm), diffuse complexes (AFM) which showed condensation behavior only at high N/P ratios. All other polyplexes and the PEI control showed similar sizes (150 nm) and compact structures in AFM, with complete condensation reached at N/P ratio of 3. Stability of siRNA polyplexes against heparin displacement and RNase digestion could be modified by PEGylation. Protection against RNase digestion was highest for PEI(25k)-g-PEG(5k)(4) and PEI(25k)-g-PEG(20k)(1), while siRNA/PEI provided insufficient protection. In knockdown experiments using NIH/3T3 fibroblasts stably expressing beta-galactosidase, it was shown that PEG chain length had a significant influence on biological activity of siRNA. Polyplexes with siRNA containing PEI(25k)-g-PEG(5k)(4) and PEI(25k)-g-PEG(20k)(1) yielded similar efficiencies of ca. 70% knockdown as lipofectamine controls. Confocal microscopy demonstrated enhanced cellular uptake of siRNA into cytosol by polyplexes formation with PEI copolymers. In conclusion, both the chain length and graft density of PEG were found to strongly influence siRNA condensation and stability and hence affect the knockdown efficiency of PEI-PEG/siRNA polyplexes.
The combination of a chemotherapeutic drug with a multidrug resistance (MDR) modulator has emerged as a promising strategy for treating MDR cancer. To ensure two drugs could be simultaneously delivered to tumor region at the optimum ratio, and the MDR modulator could be released earlier and faster than the chemotherapeutic drug to inactivate P-glycoprotein (P-gp) and subsequently inhibit the pumping out of the chemotherapeutic drug, a smart pH-sensitive polymeric micelles system with high drug loading and precise drug ratio was designed and prepared by conjugating doxorubicin (DOX) to poly(styrene-co-maleic anhydride) (SMA) derivative with adipic dihydrazide (ADH) through a acid-cleavable hydrazone bond, and then encapsulating disulfiram (DSF), a P-gp inhibitor as well as an apoptosis inducer, into the micelles formed by the self-assembly of SMA-ADH-DOX (SAD) conjugate. The pH-sensitive polymeric micelles system enabled a temporal release of two drugs: encapsulated DSF was released fast to inhibit the activity of P-gp and restore cell apoptotic signaling pathways, while conjugated DOX was released in a sustained and pH-dependent manner and highly accumulated in drug resistant cells to exert therapeutic effect, due to the inactivation of P-gp by DSF. The smart co-delivery system was very effective in enhancing the cytotoxicity by increasing the intracellular accumulation of DOX and promoting the apoptotic response, and showed the most effective inhibitory effect on the growth of drug-resistant breast cancer xenografts as compared to other combinations of both drugs. In a word, this smart co-delivery system has significant promise for the clinical therapy of MDR cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.