Image recognition is the key to smart logistics systems. Traditional handwriting feature extraction is difficult to meet the requirements of image recognition. Deep learning is used for image recognition. Firstly, convolutional neural network (CNN) and deep Boltzmann machines under deep learning are introduced. Second, cellular neural networks are used to perform feature recognition and extraction on images. Finally, a Parzen classifier is used to classify the obtained image features. The novelty is that through the structural design and research of the intelligent logistics system, the CNN is combined to construct a management system of supply chain logistics of image recognition and information processing. The experimental results show that the recognition accuracy time of the proposed improved fusion algorithm on the Mixed National Institute of Standards and Technology data set is 198.85 s. When the improved algorithm achieves the same recognition accuracy, it takes 159.65 s. The recognition efficiency of the improved algorithm is 19.71% higher than that of the unimproved algorithm. In addition, when the unimproved algorithm reaches the maximum number of iterations, the error rate is 2.47%. The error rate of the improved algorithm is only 0.74%. This study provides a basis for improving the image recognition accuracy and has certain practical value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.