This study aimed to purify and identify antioxidant peptides from the low-molecular-weight fraction (SPH-I, MW < 3 kDa) of Alcalase-hydrolyzed soybean (Glycine max L.) hydrolysate and further evaluate the cytoprotective effects of synthesized peptides against oxidative stress in human intestinal Caco-2 cells. After purification by gel filtration chromatography and reversed-phase HPLC, four major peptides were sequenced by nano-LC-ESI-MS/MS as VVFVDRL (847 Da, SPH-IA), VIYVVDLR (976 Da, SPH-IB), IYVVDLR (877 Da, SPH-IC), and IYVFVR (795 Da, SPH-ID). The antioxidant peptides were synthesized and displayed desirable DPPH radical-scavenging activity (from 16.5 ± 0.5 to 20.3 ± 1.0 μM Trolox equivalent (TE)/μM), ABTS •+ radical-scavenging activity (from 3.42 ± 0.2 to 4.24 ± 0.4 mM TE/μM), ORAC (from 143 ± 2.1 to 171 ± 4.8 μM TE/μM), and FRAP (from 54.7 ± 1.2 to 79.0 ± 0.6 mM Fe 2+ /μM). Moreover, the synthesized peptides protected Caco-2 cells against H 2 O 2 -induced oxidative damage via significantly downregulating intracellular ROS generation and lipid peroxidation (p < 0.05). Additionally, SPH-IC and SPH-ID statistically upregulated total reduced glutathione synthesis, enhanced activities of catalase and glutathione reductase, and suppressed ROS-mediated inflammatory responses via inhibiting interleukin-8 secretion (p < 0.05).
Six heat shock protein (HSP) genes from five HSP families in the parasitoid, Pteromalus puparum, were evaluated for their response to temperature (-15 ~ 3°C , and 30 ~ 42°C for 1 h), heavy metals (0.5 ~ 5 mM Cd(2+) and Cu(2+) for 24 h and 60 h), and starvation (24 h). Compared with other insect HSPs, all conserved motifs are found in P. puparum HSPs, and they are very similar to those of the recently sequenced ectoparasitoid Nasonia vitripennis. The temporal gene expression patterns indicated that these six HSP genes were all heat-inducible, of which hsp40 was the most inducible. The temperatures for maximal HSP induction at high and low temperature zone were 36 or 39°C and -3°C, respectively. In the hot zone, all HSP genes have the same initial temperature (33°C) for up-regulation. Low concentrations of Cd(2+) for a short-term promoted the expression of all HSP genes, but not high concentrations or long-term treatments. Cu(2+) stress for 24 h increased expression of nearly all HSP. Four HSP genes changed after starvation. We infer that all six HSP genes are sensitive to heat. This may help understand the absence of P. puparum during the summer and winter. The expression profiles of six HSP genes in P. puparum under heavy metal stress indicates that HSP is a short-term response to cellular distress or injury induced by Cd(2+) and Cu(2+).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.