Fruit softening is a key component of the irreversible ripening program, contributing to the palatability necessary for frugivore-mediated seed dispersal. The underlying textural changes are complex and result from cell wall remodeling and changes in both cell adhesion and turgor. While a number of transcription factors (TFs) that regulate ripening have been identified, these affect most canonical ripening-related physiological processes. Here, we show that a tomato fruit ripening–specific LATERAL ORGAN BOUNDRIES (LOB) TF, SlLOB1, up-regulates a suite of cell wall–associated genes during late maturation and ripening of locule and pericarp tissues. SlLOB1 repression in transgenic fruit impedes softening, while overexpression throughout the plant under the direction of the 35s promoter confers precocious induction of cell wall gene expression and premature softening. Transcript and protein levels of the wall-loosening protein EXPANSIN1 (EXP1) are strongly suppressed in SlLOB1 RNA interference lines, while EXP1 is induced in SlLOB1-overexpressing transgenic leaves and fruit. In contrast to the role of ethylene and previously characterized ripening TFs, which are comprehensive facilitators of ripening phenomena including softening, SlLOB1 participates in a regulatory subcircuit predominant to cell wall dynamics and softening.
A simple process is developed for the one-step preparation of dual-compartment alginate microcapsules with controlled size and structure from microfluid-generated waterin-water-in-oil (W/W/O) emulsion droplet. Unlike other methods that rely on transient W/W/O emulsion droplet, we introduce an aqueous two-phase system (ATPS) to form a stable W/W/O emulsion droplet as a template for preparing dual-compartment alginate microcapsules. Two different bioactive molecules are able to be spatially confined encapsulated in the shell and core of alginate microcapsules due to the partitioning effect of ATPS and the high viscosity of alginate solution. Moreover, an enzyme cascade reaction with a spatial confined glucose oxidase and horseradish peroxidase in the shell and core of alginate microcapsules confirms its excellent biocompatibility and high activity. This method provides a green platform for enzyme-catalyzed tandem reactions and controlled sequential release of multiple drugs based on alginate microcapsules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.