Air-stability is one of the most important considerations for the practical application of electrode materials in energy-harvesting/storage devices, ranging from solar cells to rechargeable batteries. The promising P2-layered sodium transition metal oxides (P2-Na x TmO 2 ) often suffer from structural/chemical transformations when contacted with moist air. However, these elaborate transitions and the evaluation rules towards air-stable P2-Na x TmO 2 have not yet been clearly elucidated. Herein, taking P2-Na 0.67 MnO 2 and P2-Na 0.67 Ni 0.33 Mn 0.67 O 2 as key examples, we unveil the comprehensive structural/chemical degradation mechanisms of P2-Na x TmO 2 in different ambient atmospheres by using various microscopic/spectroscopic characterizations and first-principle calculations. The extent of bulk structural/chemical transformation of P2-Na x TmO 2 is determined by the amount of extracted Na + , which is mainly compensated by Na + /H + exchange. By expanding our study to a series of Mn-based oxides, we reveal that the air-stability of P2-Na x TmO 2 is highly related to their oxidation features in the first charge process and further propose a practical evaluating rule associated with redox couples for air-stable Na x TmO 2 cathodes.
Li La Zr O -based Li-rich garnets react with water and carbon dioxide in air to form a Li-ion insulating Li CO layer on the surface of the garnet particles, which results in a large interfacial resistance for Li-ion transfer. Here, we introduce LiF to garnet Li La Zr Ta O (LLZT) to increase the stability of the garnet electrolyte against moist air; the garnet LLZT-2 wt % LiF (LLZT-2LiF) has less Li CO on the surface and shows a small interfacial resistance with Li metal, a solid polymer electrolyte, and organic-liquid electrolytes. An all-solid-state Li/polymer/LLZT-2LiF/LiFePO battery has a high Coulombic efficiency and long cycle life; a Li-S cell with the LLZT-2LiF electrolyte as a separator, which blocks the polysulfide transport towards the Li-metal, also has high Coulombic efficiency and kept 93 % of its capacity after 100 cycles.
Li7La3Zr2O12 (LLZO) is a promising electrolyte material for all-solid-state battery due to its high ionic conductivity and good stability with metallic lithium. In this article, we studied the effect of crucibles on the ionic conductivity and air stability by synthesizing 0.25Al doped LLZO pellets in Pt crucibles and alumina crucibles, respectively. The results show that the composition and microstructure of the pellets play important roles influencing the ionic conductivity, relative density, and air stability. Specifically, the 0.25Al-LLZO pellets sintered in Pt crucibles exhibit a high relative density (∼96%) and high ionic conductivity (4.48 × 10(-4) S cm(-1)). The ionic conductivity maintains 3.6 × 10(-4) S cm(-1) after 3-month air exposure. In contrast, the ionic conductivity of the pellets from alumina crucibles is about 1.81 × 10(-4) S cm(-1) and drops to 2.39 × 10(-5) S cm(-1) 3 months later. The large grains and the reduced grain boundaries in the pellets sintered in Pt crucibles are favorable to obtain high ionic conductivity and good air stability. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy results suggest that the formation of Li2CO3 on the pellet surface is probably another main reason, which is also closely related to the relative density and the amount of grain boundary within the pellets. This work stresses the importance of synthesis parameters, crucibles included, to obtain the LLZO electrolyte with high ionic conductivity and good air stability.
Li 7 La 3 Zr 2 O 12 (LLZO) has been reported to react in humid air to form Li 2 CO 3 on the surface, which decreases ionic conductivity. To study the reaction mechanism, 0.5-mol Ta-doped LLZO (0.5Ta-LLZO) pellets are exposed in dry (humiditỹ 5%) and humid air (humidity~80%) for 6 weeks, respectively. After exposure in humid air, the formation of Li 2 CO 3 on the pellet surface is confirmed experimentally and the room-temperature ionic conductivity is found to drop from 6.45910 À4 S cm À1 to 3.61910 À4 S cm À1 . Whereas for the 0.5Ta-LLZO samples exposed in dry air, the amount of formed Li 2 CO 3 is much less and the ionic conductivity barely decreases. To further clarify the reaction mechanism of 0.5Ta-LLZO pellets with moisture, we decouple the reactions between 0.5Ta-LLZO with water and CO 2 by immersing 0.5Ta-LLZO pellets in deionized water for 1 week and then exposing them to ambient air for another week. After immersion in deionized water, Li + /H + exchange occurs and LiOH H 2 O forms on the surface, which is a necessary intermediate step for the Li 2 CO 3 formation. Based on these observations, a reaction model is proposed and discussed. K E Y W O R D Sgarnets, impedance spectroscopy, ion exchange, lithium oxide, Raman spectroscopy
The combination of carbon materials and ferrite materials has recently attracted increased interest in microwave absorption applications. Herein, a novel composite with cobalt cores encapsulated in a porous carbon shell was synthesized via a facile sintering process with a cobaltic metal-organic framework (Co-MOF-74) as the precursor. Because of the magnetic loss caused by the Co cores and dielectric loss caused by the carbon shell with a unique porous structure, together with the interfacial polarization between two components, the ferromagnetic composite exhibited enhanced electromagnetic wave absorption performance compared to traditional ferrite materials. With the thermal decomposition temperature of 800 °C, the optimal reflection loss value achieved -62.12 dB at 11.85 GHz with thin thickness (2.4 mm), and the bandwidth ranged from 4.1 to 18 GHz with more than 90% of the microwave that could be absorbed. The achieved performance illustrates that the as-prepared porous Co-C core-shell composite shows considerable potential as an effective microwave absorber.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.