Distant supervised relation extraction has been widely used to find novel relational facts from text. However, distant supervision inevitably accompanies with the wrong labelling problem, and these noisy data will substantially hurt the performance of relation extraction. To alleviate this issue, we propose a sentence-level attention-based model for relation extraction. In this model, we employ convolutional neural networks to embed the semantics of sentences. Afterwards, we build sentence-level attention over multiple instances, which is expected to dynamically reduce the weights of those noisy instances. Experimental results on real-world datasets show that, our model can make full use of all informative sentences and effectively reduce the influence of wrong labelled instances. Our model achieves significant and consistent improvements on relation extraction as compared with baselines. The source code of this paper can be obtained from https: //github.com/thunlp/NRE.
Representation learning of knowledge bases aims to embed both entities and relations into a low-dimensional space. Most existing methods only consider direct relations in representation learning. We argue that multiple-step relation paths also contain rich inference patterns between entities, and propose a path-based representation learning model. This model considers relation paths as translations between entities for representation learning, and addresses two key challenges: (1) Since not all relation paths are reliable, we design a path-constraint resource allocation algorithm to measure the reliability of relation paths. (2) We represent relation paths via semantic composition of relation embeddings.Experimental results on real-world datasets show that, as compared with baselines, our model achieves significant and consistent improvements on knowledge base completion and relation extraction from text. The source code of this paper can be obtained from https://github.com/mrlyk423/ relation_extraction.
Word embeddings are well known to capture linguistic regularities of the language on which they are trained. Researchers also observe that these regularities can transfer across languages. However, previous endeavors to connect separate monolingual word embeddings typically require cross-lingual signals as supervision, either in the form of parallel corpus or seed lexicon. In this work, we show that such cross-lingual connection can actually be established without any form of supervision. We achieve this end by formulating the problem as a natural adversarial game, and investigating techniques that are crucial to successful training. We carry out evaluation on the unsupervised bilingual lexicon induction task. Even though this task appears intrinsically cross-lingual, we are able to demonstrate encouraging performance without any cross-lingual clues.
No abstract
Representation learning (RL) of knowledge graphs aims to project both entities and relations into a continuous low-dimensional space. Most methods concentrate on learning representations with knowledge triples indicating relations between entities. In fact, in most knowledge graphs there are usually concise descriptions for entities, which cannot be well utilized by existing methods. In this paper, we propose a novel RL method for knowledge graphs taking advantages of entity descriptions. More specifically, we explore two encoders, including continuous bag-of-words and deep convolutional neural models to encode semantics of entity descriptions. We further learn knowledge representations with both triples and descriptions. We evaluate our method on two tasks, including knowledge graph completion and entity classification. Experimental results on real-world datasets show that, our method outperforms other baselines on the two tasks, especially under the zero-shot setting, which indicates that our method is capable of building representations for novel entities according to their descriptions. The source code of this paper can be obtained from https://github.com/xrb92/DKRL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.