Synthesizing quantum dots (QDs) using simple methods and utilizing them in optoelectronic devices are active areas of research. In this paper, we fabricated SnSe2 QDs via sonication and a laser ablation process. Deionized water was used as a solvent, and there were no organic chemicals introduced in the process. It was a facile and environmentally-friendly method. We demonstrated an ultraviolet (UV)-detector based on monolayer graphene and SnSe2 QDs. The photoresponsivity of the detector was up to 7.5 × 106 mAW−1, and the photoresponse time was ~0.31 s. The n–n heterostructures between monolayer graphene and SnSe2 QDs improved the light absorption and the transportation of photocarriers, which could greatly increase the photoresponsivity of the device.
In recent years, using two-dimensional (2D) materials to realize broadband photodetection has become a promising area in optoelectronic devices. Here, we successfully synthesized SnSe nanosheets (NSs) by a facile tip ultra-sonication method in water-ethanol solvent which was eco-friendly. The carrier dynamics of SnSe NSs was systematically investigated via a femtosecond transient absorption spectroscopy in the visible wavelength regime and three decay components were clarified with delay time of τ1 = 0.77 ps, τ2 = 8.3 ps, and τ3 = 316.5 ps, respectively, indicating their potential applications in ultrafast optics and optoelectronics. As a proof-of-concept, the photodetectors, which integrated SnSe NSs with monolayer graphene, show high photoresponsivities and excellent response speeds for different incident lasers. The maximum photo-responsivities for 405, 532, and 785 nm were 1.75 × 104 A/W, 4.63 × 103 A/W, and 1.52 × 103 A/W, respectively. The photoresponse times were ~22.6 ms, 11.6 ms, and 9.7 ms. This behavior was due to the broadband light response of SnSe NSs and fast transportation of photocarriers between the monolayer graphene and SnSe NSs.
A coupled graphene structure (CGS) is proposed to obtain an electrically tunable sub-femtometer (sub-fm) dimensional resolution. According to analytical and numerical investigations, the CGS can support two branches of localized surface plasmon resonances (LSPRs), which park at the dielectric spacer between two pieces of graphene. The coupled efficiencies of the odd-order modes are even four orders of magnitude higher than that of the even-order modes. In particular, a sub-fm resolution for detecting the change in the spacer thickness can be reached using the lowest order LSPR mode. The LSPR wavelength and the dimensional differential resolution can be electrically-tuned from 9.5 to 33 μm and from 4.3 to 15 nm/pm, respectively, by modifying the chemical potential of the graphene via the gate voltage. Furthermore, by replacing the graphene ribbon (GR) at the top of the CGS with multiple GRs of different widths, a resonant frequency comb in the absorption spectrum with a tunable frequency interval is generated, which can be used to detect the changes in spacer thicknesses at different locations with sub-fm resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.