BackgroundSelf-management is an important skill for patients with diabetes, and it involves frequent monitoring of glucose levels and behavior modification. Techniques to enhance the behavior changes of diabetic patients have been developed, such as diabetes self-management education and telehealthcare. Although the patients are engaged in self-management activities, barriers to behavior changes remain and additional work is necessary to address the impact of electronic media and telehealthcare on patient self-care behaviors.ObjectiveThe aims of this study were to (1) explore the behaviors of diabetic patients interacting with online applications, (2) determine the impact of a telehealthcare program among 7 self-care behaviors of the patients, and (3) determine the changes in glycosylated hemoglobin (HbA1c) levels.MethodsA telehealthcare program was conducted to assist the patients with 7 self-care activities. The telehealthcare program lasted for 18 months and included the use of a third-generation mobile telecommunications glucometer, an online diabetes self-management system, and a teleconsultant service. We analyzed the data of 59 patients who participated in the telehealthcare program and 103 who did not. The behavioral assessments and the HbA1c data were collected and statistically analyzed to determine whether the telehealthcare services had an impact on the patients. We divided the 18-month period into 3 6-month intervals and analyzed the parameters of patients assisted by the telehealthcare service at different time points. We also compared the results of those who were assisted by the telehealthcare service with those who were not.ResultsThere was a significant difference in monitoring blood glucose between the beginning and the end of the patient participation (P=.046) and between the overall period and the end of patient participation (P<.001). Five behaviors were significantly different between the intervention and control patients: being active (P<.001), healthy eating (P<.001), taking medication (P<.001), healthy coping (P=.02), and problem solving (P<.001). Monitoring of blood glucose was significantly different (P=.02) during the 6-12 month stage of patient participation between the intervention and control patients. A significant difference between the beginning and the 6-12 month stage of patient participation was observed for the mean value of HbA1c level (P=.02), and the differences between the overall HbA1c variability and the variability of each 6-month interval was also significant.ConclusionsTelehealthcare had a positive effect on diabetic patients. This study had enhanced blood glucose monitoring, and the patients in the program showed improvements in glycemic control. The self-care behaviors affect patient outcomes, and the changes of behavior require time to show the effects.
Plasticizer di(2-ethylhexyl)phthalate (DEHP) can leach from medical devices such as blood storage bags and the tubing. Recently, epidemiological studies showed that phthalate metabolites levels in the urine are associated with low bone mineral density (BMD) in older women. The detailed effect and mechanism of DEHP on osteoblastogenesis and adipogenesis, and bone loss remain to be clarified. Here, we investigated the effect and mechanism of DEHP and its active metabolite mono(2-ethylhexyl)phthalate (MEHP) on osteoblastogenesis and adipogenesis. The in vitro study showed that osteoblast differentiation of bone marrow stromal cells (BMSCs) was significantly and dose-dependently decreased by DEHP and MEHP (10-100 µM) without cytotoxicity to BMSCs. The mRNA expressions of alkaline phosphatase, Runx2, osteocalcin (OCN), Wnt1, and β-catenin were significantly decreased in DEHP- and MEHP-treated BMSCs during differentiation. MEHP, but not DEHP, significantly increased the adipocyte differentiation of BMSCs and PPARγ mRNA expression. Both DEHP and MEHP significantly increased the ratios of phosphorylated β-catenin/β-catenin and inhibited osteoblastogenesis, which could be reversed by Wnt activator lithium chloride and PPARγ inhibitor T0070907. Moreover, exposure of mice to DEHP (1, 10, and 100 mg/kg) for 8 weeks altered BMD and microstructure. In BMSCs isolated from DEHP-treated mice, osteoblastogenesis and Runx2, Wnt1, and β-catenin expression were decreased, but adipogenesis and PPARγ expression were increased. These findings suggest that DEHP and its metabolite MEHP exposure may inhibit osteoblastogenesis and promote adipogenesis of BMSCs through the Wnt/β-catenin-regulated and thus triggering bone loss. PPARγ signaling may play an important role in MEHP- and DEHP-induced suppression of osteogenesis. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1124-1134, 2018.
Pigment epithelium-derived factor (PEDF) is a multifunctional protein that exhibits anti-angiogenic, antitumor, anti-inflammatory, antioxidative, anti-atherogenic, and cardioprotective properties. While it was recently shown that PEDF expression is inhibited under low oxygen conditions, the functional role of PEDF in response to hypoxia/reoxygenation (H/R) remains unclear. The goal of this study was to therefore investigate the influence of PEDF on myocardial H/R injury. For these analyses, PEDF-specific small interfering RNA-expressing and PEDF-expressing lentivirus (PEDF-LV) vectors were utilized to knockdown or stably overexpress PEDF, respectively, within human cardiomyocytes (HCM) in vitro. We noted that reactive oxygen species (ROS) play important roles in the induction of cell death pathways, including apoptosis and autophagy in ischemic hearts. Our findings demonstrate that overexpression of PEDF resulted in a significant reduction in ROS production and attenuation of mitochondrial membrane potential depletion under H/R conditions. Furthermore, PEDF inhibited the activation of a two-step apoptotic pathway in which caspase-dependent (caspase-9 and caspase-3) and caspase-independent (apoptosis inducing factor and endonuclease G), which in turn cleaves several crucial substrates including the DNA repair enzyme poly (ADP-ribose) polymerase. Meanwhile, overexpression of PEDF also promoted autophagy, a process that is typically activated in response to H/R. Therefore, these findings suggest that PEDF plays a critical role in preventing H/R injury by modulating anti-oxidant and anti-apoptotic factors and promoting autophagy.
Background Acrolein is an extremely electrophilic aldehyde. Increased urinary acrolein adducts have been found in type 2 diabetic patients and people with a smoking habit. The increased blood acrolein was shown in patients who received the cancer drug cyclophosphamide. Both diabetes and smoking are risk factors for skeletal muscle wasting or atrophy. Acrolein has been found to induce myotube atrophy in vitro . The in vitro and in vivo effects and mechanisms of acrolein on myogenesis and the in vivo effect of acrolein on muscle wasting still remain unclear. Methods C2C12 myoblasts were used to assess the effects of low‐dose acrolein (0.125–1 μM) on myogenesis in vitro . Mice were exposed daily to acrolein in distilled water by oral administration (2.5 and 5 mg/kg) for 4 weeks with or without glycerol‐induced muscle injury to investigate the effects of acrolein on muscle wasting and regeneration. Results Non‐cytotoxic‐concentration acrolein dose dependently inhibited myogenic differentiation in myoblasts (myotube formation inhibition: 0.5 and 1 μM, 66.25% and 46.25% control, respectively, n = 4, P < 0.05). The protein expression for myogenesis‐related signalling molecules (myogenin and phosphorylated Akt: 0.5 and 1 μM, 85.15% and 51.52% control and 62.63% and 56.57% control, respectively, n = 4, P < 0.05) and myosin heavy chain (MHC: 0.5 and 1 μM, 63.64% and 52.53% control, n = 4, P < 0.05) were decreased in acrolein‐treated myoblasts. Over‐expression of the constitutively active form of Akt in myoblasts during differentiation prevented the inhibitory effects of acrolein (1 μM) on myogenesis (MHC and myogenin protein expression: acrolein with or without constitutively active Akt, 64.65% and 105.21% control and 69.14% and 102.02% control, respectively, n = 5, P < 0.05). Oral administration of acrolein for 4 weeks reduced muscle weights (5 mg/kg/day: 65.52% control, n = 6, P < 0.05) and cross‐sectional area of myofibers in soleus muscles (5 mg/kg/day: 79.92% control, n = 6, P < 0.05) with an up‐regulation of atrogin‐1 and a down‐regulation of phosphorylated Akt protein expressions. Acrolein retarded soleus muscle regeneration in a glycerol‐induced muscle regeneration mouse model (5 mg/kg/day: 49.29% control, n = 4, P < 0.05). Acrolein exposure reduced muscle endurance during rotarod fatigue performance in mice with or without glycerol‐induced muscle injury (5 mg/kg/day without glycerol: 30.43% control, n ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.