The charge carrier behavior and dielectric properties of BaF2:Tb3+ nanocrystals have been studied by alternating current (AC) impedance spectroscopy. The electron and ion coexist in the transport process. The F− ion’s contribution to the total conduction increases with the doping concentration up to 4% and then decreases. Tb doping leads to the increase of defect quantities and a variation of charge carrier transport paths, which causes the increase of the ion diffusion coefficient and the decreases of bulk and grain boundary resistance. When the Tb-doped concentration is higher than 4%, the effect of deformation potential scattering variation on the transport property is dominant, which results in the decrease of the ion diffusion coefficient and increases of bulk and grain boundary resistance. The conduction properties of our BaF2:Tb3+ nanocrystals are compared with previous results that were found for the single crystals of rare earth-doped BaF2. Tb doping causes increases of both the quantity and the probability of carrier hopping, and it finally leads to increases of BaF2 nanocrystals’ permittivity in the low frequency region.
The electric and dielectric properties of SrF2:Tb3+ nanocrystals were studied by AC impedance spectroscopy. The grain and grain boundary resistances and the complex permittivity with different Tb-doped concentrations were obtained. As the Tb-doping concentration increases, the grain and grain boundary resistances decrease until 6% and then increase. The Tb doping leads to the increase of interstitial F− quantity and the decrease of the activation enthalpy, and finally causes the decreases of grain and grain boundary resistances. When the Tb-doping is larger than 6%, the effect of the deformation potential scattering is dominant, which leads to the increases of grain and grain boundary resistances. The strong dispersion of the permittivity at the low frequencies indicates the carrier was hopping in the transport process. The ε′ and ε″ values at the low frequencies decrease as the sample resistance increases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.