Progesterone has been recognized as essential for the establishment and maintenance of pregnancy, and is typically known as an immunosuppressive agent. However, its effects on mediating Brucella infection–induced inflammation have not been evaluated. Here we demonstrated that Brucella abortus infection inhibits progesterone levels in the pregnant mouse by suppressing the production of progesterone by placenta. Progesterone treatment significantly reduced the secretion of inflammatory cytokines in serum, macrophages, and trophoblasts of B. abortus–infected mice, leading to decreased placentitis and enhancing the pup viability. Mechanistically, this decreased inflammatory response results from inhibition of NF-kB activation by progesterone. Moreover, progesterone treatment suppresses B. abortus growth within trophoblasts associated with an inability of bacteria to escape the late endosome compartment in vitro. Collectively, our data illustrate that progesterone treatment might be useful therapeutically in protection against placentitis or abortion caused by B. abortus infection.
Osteoporosis is a metabolic bone disease characterized by insufficient osteoblastic function and/or excessive osteoclastic activity. One promising strategy for treating osteoporosis is inhibiting excessive osteoclast resorbing activity. Previous studies have revealed that anemonin (ANE), isolated from various types of Chinese natural herbs, has anti-inflammatory and anti-oxidative properties. However, whether ANE regulates osteoclastogenesis is unknown. This study aimed to investigate the potential effect of ANE on osteoclastogenesis and inflammatory bone loss in mice. In in vitro studies, ANE suppressed RANKL-stimulated osteoclast differentiation and function by downregulating the expression of osteoclast master transcriptor NFATc1, as well as its upstream transcriptor c-Fos, by decreasing NF-kB and ERK1/2 signaling. Interestingly, ANE did not change the phosphorylation and degradation of IkB-a and activation of JNK and p38 MAPKs. However, ANE repressed the phosphorylation of MSK-1 which is the downstream target of ERK1/2 and p38 MAPK and can phosphorylate NF-kB p65 subunit. These results implicated that ANE might suppress NF-kB activity via modulation of ERK1/2 mediated NF-kB phosphorylation. In addition, ANE directly suppressed NFATc1 transcription by inhibiting Blimp-1 expression, and the subsequent enhancement of the expression of NFATc1 negative regulators, Bcl-6 and IRF-8. Moreover, in vivo studies were conducted using an LPS-induced inflammatory bone loss mice model. Micro-CT and histology analysis showed that ANE treatment significantly improved trabecular bone parameters and bone destruction. These data indicate that ANE can attenuate RANKL-induced osteoclastogenesis and ameliorate LPS-induced inflammatory bone loss in mice through modulation of NFATc1 via ERK1/2-mediated NF-kB phosphorylation and Blimp1 signal pathways. ANE may provide new treatment options for osteoclast-related diseases.
A number of studies demonstrated that some tea extracts exert inhibitory effects on osteoclastogenesis induced by receptor activator of nuclear factor κB ligand (RANKL). However, the effect of purple tea,...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.