Cancer is a leading cause of death worldwide, particularly because of its high mortality rate in patients who are diagnosed at late stages. Conventional biomarkers originating from blood are widely used for cancer diagnosis, but their low sensitivity and specificity limit their widespread application in cancer screening among the general population. Currently, emerging studies are exploiting novel, highly-accurate biomarkers in human body fluids that are obtainable through minimally invasive techniques, which is defined as liquid biopsy. Circular RNAs (circRNAs) are a newly discovered class of noncoding RNAs generated mainly by pre-mRNA splicing. Following the rapid development of high-throughput transcriptome analysis techniques, numerous circRNAs have been recognized to exist stably and at high levels in body fluids, including plasma, serum, exosomes, and urine. CircRNA expression patterns exhibit distinctly differences between patients with cancer and healthy controls, suggesting that circRNAs in body fluids potentially represent novel biomarkers for monitoring cancer development and progression. In this study, we summarized the expression of circRNAs in body fluids in a pan-cancer dataset and characterized their clinical applications in liquid biopsy for cancer diagnosis and prognosis. In addition, a user-friendly web interface was developed to visualize each circRNA in fluids (https://mulongdu.shinyapps.io/circrnas_in_fluids/).
Delayed wound healing is one of the most prominent clinical manifestations of diabetes and lacks satisfactory treatment options. Persistent inflammation occurs in the late phase of wound healing and impairs the healing process in mice with diabetes mellitus (DM). In this study, we observed that the late wound healing in streptozotocin (STZ)-induced DM mice could be improved by (-)-epigallocatechin gallate (EGCG). The macrophage accumulation, inflammation response, and Notch signaling can be inhibited by EGCG in the skin wounds of DM mice. Furthermore, we found that the LPS-induced inflammation response including overactivated Notch signaling, was inhibited by EGCG in mouse macrophages. Moreover, we confirmed that EGCG could directly bind with mouse Notch-1. In addition, our studies indicated that diabetic wound healing was improved by EGCG treatment before or after the inflammation phase by targeting the Notch signaling pathway, which suggests that the pre-existing diabetic wound healing can be improved by EGCG. To summarize, wound healing can be improved by EGCG through targeting Notch in STZ-induced DM mice. Our findings provide insight into the therapeutic strategy for diabetic wounds and offer EGCG as a novel potential medicine to treat chronic wounds.-Huang, Y.-W., Zhu, Q.-Q., Yang, X.-Y., Xu, H.-H., Sun, B., Wang, X.-J., Sheng, J. Wound healing can be improved by (-)-epigallocatechin gallate through targeting Notch in streptozotocin-induced diabetic mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.