Flexible electronics can serve as powerful tools for biomedical diagnosis and therapies of neurological disorders, particularly for application cases with brain–machine interfaces (BMIs). Existing conformal soft bioelectrodes are applicable for basic electrocorticogram (ECoG) collecting/monitoring. Nevertheless, as an emerging and promising approach, further multidisciplinary efforts are still demanded for in‐depth exploitations with these conformal soft electronics toward their practical neurophysiological applications in both scientific research and real‐world clinical operation. Here, clinically‐friendly silk‐supported/delivered soft bioelectronics are developed, and multiple functions and features valuable for customizable intracranial applications (e.g., biocompatible and spontaneously conformal coupling with cortical surface, spatiotemporal ECoG detecting/monitoring, electro‐neurophysiological neural stimulating/decoding, controllable loading/delivery of therapeutic molecules, and parallel optical readouts of operating states) are integrated.
Name recognition plays important role in self-related cognitive processes and also contributes to a variety of clinical applications, such as autism spectrum disorder diagnosis and consciousness disorder analysis. However, most previous name-related studies usually adopted noninvasive EEG or fMRI recordings, which were limited by low spatial resolution and temporal resolution, respectively, and thus millisecond-level response latencies in precise brain regions could not be measured using these noninvasive recordings. By invasive stereo-electroencephalography (SEEG) recordings that have high resolution in both the spatial and temporal domain, the current study distinguished the neural response to one's own name or a stranger's name, and explored common active brain regions in both auditory and visual modalities. The neural activities were classified using spatiotemporal features of high-gamma, beta, and alpha band. Results showed that different names could be decoded using multi-region SEEG signals, and the best classification performance was achieved at high gamma (60–145 Hz) band. In this case, auditory and visual modality-based name classification accuracies were 84.5 ± 8.3 and 79.9 ± 4.6%, respectively. Additionally, some single regions such as the supramarginal gyrus, middle temporal gyrus, and insula could also achieve remarkable accuracies for both modalities, supporting their roles in the processing of self-related information. The average latency of the difference between the two responses in these precise regions was 354 ± 63 and 285 ± 59 ms in the auditory and visual modality, respectively. This study suggested that name recognition was attributed to a distributed brain network, and the subsets with decoding capabilities might be potential implanted regions for awareness detection and cognition evaluation.
Objective: Accurate identification of functional cortical regions is essential in neurological resection. The central sulcus (CS) is an important landmark that delineates functional cortical regions. Median nerve stimulation (MNS) is a standard procedure to identify the position of the CS intraoperatively. In this paper, we introduce an automated procedure that uses MNS to rapidly localize the CS and create functional somatotopic maps. Approach: We recorded electrocorticographic signals from 13 patients who underwent MNS in the course of an awake craniotomy. We analyzed these signals to develop an automated procedure that determines the location of the CS and that also produces functional somatotopic maps. Main results: The comparison between our automated method and visual inspection performed by the neurosurgeon shows that our procedure has a high sensitivity (89%) in identifying the CS. Further, we found substantial concordance between the functional somatotopic maps generated by our method and passive functional mapping (92% sensitivity). Significance: Our automated MNS-based method can rapidly localize the CS and create functional somatotopic maps without imposing additional burden on the clinical procedure. With additional development and validation, our method may lead to a diagnostic tool that guides neurosurgeon and reduces postoperative morbidity in patients undergoing resective brain surgery.
Objective. Revealing the relationship between simultaneous scalp electroencephalography (EEG) and intracranial electroencephalography (iEEG) is of great importance for both neuroscientific research and translational applications. However, whether prominent iEEG features in the high-gamma band can be reflected by scalp EEG is largely unknown. To address this, we investigated the phase-amplitude coupling (PAC) phenomenon between the low-frequency band of scalp EEG and the high-gamma band of iEEG. Approach. We analyzed a simultaneous iEEG and scalp EEG dataset acquired under a verbal working memory paradigm from nine epilepsy subjects. The PAC values between pairs of scalp EEG channel and identified iEEG channel were explored. After identifying the frequency combinations and electrode locations that generated the most significant PAC values, we compared the PAC values of different task periods (encoding, maintenance, and retrieval) and memory loads. Main results. We demonstrated that the amplitude of high-gamma activities in the entorhinal cortex, hippocampus, and amygdala was correlated to the delta or theta phase at scalp locations such as Cz and Pz. In particular, the frequency bin that generated the maximum PAC value centered at 3.16–3.84 Hz for the phase and 50–85 Hz for the amplitude. Moreover, our results showed that PAC values for the retrieval period were significantly higher than those of the encoding and maintenance periods, and the PAC was also influenced by the memory load. Significance. This is the first human simultaneous iEEG and scalp EEG study demonstrating that the amplitude of iEEG high-gamma components is associated with the phase of low-frequency components in scalp EEG. These findings enhance our understanding of multiscale neural interactions during working memory, and meanwhile, provide a new perspective to estimate intracranial high-frequency features with non-invasive neural recordings.
In article number 1801617 , Tiger H. Tao, Yun‐Lu Sun, Ying Mao, and co‐workers report clinical‐friendly silk‐supported/delivered soft bioelectronics with controllable loading/delivery of therapeutic molecules and parallel optical readouts of operating states for the investigation of spatio‐temporal epileptiform activities and neural encoding/decoding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.