In the present article, a novel gas engine-driven heat pump (GEHP) which could independently provide heating, cooling, and hot water for the buildings with its autonomous power supply system was presented, and the cooling performance characteristics of GEHP using mixture refrigerant R134a/R152a were investigated experimentally. The thermophysical properties and flammability of this proposed mixture refrigerant were analyzed and experimented to approve that it could be used safely in GEHP. The experimental results indicated that the cooling capacity, waste heat recovered from cylinder jacket and exhaust gas, gas engine energy consumption, and compressor power increased with the increase of the gas engine speeds and evaporator water inlet flow rate, but changed in a small range with the increase of the evaporator water inlet temperature except cooling capacity. The generator power remained about 4.90 kW in different operating conditions. Furthermore, the coefficient of performance (COP) and the primary energy ratio (PER) of GEHP also increased with the increase of the evaporator water inlet flow rate and temperature, but decreased with the increase of gas engine speeds. Finally, maximum COP and PER with mixture refrigerant R134a/R152a has been estimated with 8.88 and 1.69 in the aforementioned conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.