A multilevel thresholding algorithm for histogram-based image segmentation is presented in this paper. The proposed algorithm introduces an adaptive adjustment strategy of the rotation angle and a cooperative learning strategy into quantum genetic algorithm (called IQGA). An adaptive adjustment strategy of the quantum rotation which is introduced in this study helps improving the convergence speed, search ability, and stability. Cooperative learning enhances the search ability in the high-dimensional solution space by splitting a high-dimensional vector into several one-dimensional vectors. The experimental results demonstrate good performance of the IQGA in solving multilevel thresholding segmentation problem by compared with QGA, GA and PSO.
The rapidly growing encrypted traffic hides a large number of malicious behaviours. The difficulty of collecting and labelling encrypted traffic makes the class distribution of dataset seriously imbalanced, which leads to the poor generalisation ability of the classification model. To solve this problem, a new representation learning method in encrypted traffic and its diversity enhancement model are proposed, which uses the diversity of images to represent the diversity of traffic samples. First, the encrypted traffic is transformed into Markov images. Then, a diversity maximisation Markov‐GAN based on the Simpson index is designed to generate new Markov images. Finally, the balanced Markov image set is sent to the CNN for classification. Experimental results show that the proposed method can predict the whole dataset space with only a few original samples. And the classification accuracies under different imbalance degrees are significantly improved, all of which are over 90%. The enhanced Markov image set can effectively alleviate performance generalisation deviation caused by different network depths. Even an ordinary CNN has almost the same classification effect as VGG13 and VGG16. Compared with other data enhancement methods, the Markov‐GAN only needs to balance the transform domain dataset, which is lightweight, easy to train and has stronger amplification ability.
In the intelligent era of human-computer symbiosis, the use of machine learning method for covert communication confrontation has become a hot topic of network security. The existing covert communication technology focuses on the statistical abnormality of traffic behavior and does not consider the sensory abnormality of security censors, so it faces the core problem of lack of cognitive ability. In order to further improve the concealment of communication, a game method of “cognitive deception” is proposed, which is aimed at eliminating the anomaly of traffic in both behavioral and cognitive dimensions. Accordingly, a Wasserstein Generative Adversarial Network of Covert Channel (WCCGAN) model is established. The model uses the constraint sampling of cognitive priors to construct the constraint mechanism of “functional equivalence” and “cognitive equivalence” and is trained by a dynamic strategy updating learning algorithm. Among them, the generative module adopts joint expression learning which integrates network protocol knowledge to improve the expressiveness and discriminability of traffic cognitive features. The equivalent module guides the discriminant module to learn the pragmatic relevance features through the activity loss function of traffic and the application loss function of protocol for end-to-end training. The experimental results show that WCCGAN can directly synthesize traffic with comprehensive concealment ability, and its behavior concealment and cognitive deception are as high as 86.2% and 96.7%, respectively. Moreover, the model has good convergence and generalization ability and does not depend on specific assumptions and specific covert algorithms, which realizes a new paradigm of cognitive game in covert communication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.