Antibiotic resistance poses one of the greatest threats to global health today; conventional drug therapies are becoming increasingly inefficacious and limited. We identified 16 medicinal plant species used by traditional healers for the treatment of infectious and inflammatory diseases in the Greater Mpigi region of Uganda. Extracts were evaluated for their ability to inhibit growth of clinical isolates of multidrug-resistant ESKAPE pathogens. Extracts were also screened for quorum quenching activity against S. aureus, including direct protein output assessment (δ-toxin), and cytotoxicity against human keratinocytes (HaCaT). Putative matches of compounds were elucidated via LC-FTMS for the best-performing extracts. These were extracts of Zanthoxylum chalybeum (Staphylococcus aureus: MIC: 16 μg/mL; Enterococcus faecium: MIC: 32 μg/mL) and Harungana madagascariensis (S. aureus: MIC: 32 μg/mL; E. faecium: MIC: 32 μg/mL) stem bark. Extracts of Solanum aculeastrum root bark and Sesamum calycinum subsp. angustifolium leaves exhibited strong quorum sensing inhibition activity against all S. aureus accessory gene regulator (agr) alleles in absence of growth inhibition (IC 50 values: 1-64 μg/mL). The study provided scientific evidence for the potential therapeutic efficacy of these medicinal plants in the Greater Mpigi region used for infections and wounds, with 13 out of 16 species tested being validated with in vitro studies. The rise of antimicrobial resistance (AMR) requires mobilization of political, financial and research investment due to its emergence as a global health hazard that threatens the ability to treat infectious diseases 1. According to the World Health Organization, AMR poses "one of the biggest threats to global health, food security, and development today" and can affect anyone in any country and of any age 2. Today, AMR already accounts for 700,000 deaths annually. By 2050, this figure is estimated to reach more than 10 million deaths per year, which is more people than currently die from cancer 3. Because effective antibiotics are critical for treatment of bacterial infections and for procedures where there is a high risk of infection, e.g. surgery, new anti-infectives are needed to overcome this global threat 4. The issue of resistance is not uniformly spread across all bacteria 5. Six species have been identified by the Infectious Disease Society of America (IDSA) as being especially dangerous due to their potential multidrug resistance mechanisms and virulence. They are referred to as 'ESKAPE' pathogens, which is an acronym for Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter species. This group of pathogenic bacteria encompasses both Gram-negative and Gram-positive species that are capable of 'escaping' bactericidal action of conventional
Local people in the Sudhnoti district of Pakistan share a rich practice of traditional medicine for the treatment of a variety of ailments. We selected nine plants from the Sudhnoti ethnopharmacological tradition used for the treatment of infectious and inflammatory disease. Our aim was to evaluate the in vitro anti-infective potential of extracts from these species against multidrug-resistant (MDR) ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacter species) pathogens. Plant specimens were collected in the Sudhnoti district of Pakistan and vouchers deposited in Pakistan and the USA. Dried bulk specimens were ground into a fine powder and extracted by aqueous decoction and maceration in ethanol. Extracts were assessed for growth inhibitory activity against ESKAPE pathogens and biofilm and quorum sensing activity was assessed in Staphylococcus aureus. Cytotoxicity to human cells was assessed via a lactate dehydrogenase assay of treated human keratinocytes (HaCaTs). Four ethanolic extracts (Zanthoxylum armatum, Adiantum capillus-venaris, Artemisia absinthium, and Martynia annua) inhibited the growth of MDR strains of ESKAPE pathogens (IC50: 256 μg mL−1). All extracts, with the exception of Pyrus pashia and M. annua, exhibited significant quorum quenching in a reporter strain for S. aureus agr I. The ethanolic extract of Z. armatum fruits (Extract 1290) inhibited quorum sensing (IC50 32–256 μg mL−1) in S. aureus reporter strains for agr I-III. The quorum quenching activity of extract 1290 was validated by detection of δ-toxin in the bacterial supernatant, with concentrations of 64–256 μg mL−1 sufficient to yield a significant drop in δ-toxin production. None of the extracts inhibited S. aureus biofilm formation at sub-inhibitory concentrations for growth. All extracts were well tolerated by human keratinocytes (LD50 ≥ 256 μg mL−1). Chemical analysis of extract 1290 by liquid chromatography-Fourier transform mass spectrometry (LC-FTMS) revealed the presence of 29 compounds, including eight with putative structural matches. In conclusion, five out of the nine selected anti-infective medicinal plants exhibited growth inhibitory activity against at least one MDR ESKAPE pathogen at concentrations not harmful to human keratinocytes. Furthermore, Z. armatum was identified as a source of quorum quenching natural products and further bioassay-guided fractionation of this species is merited.
Although nano-copper is currently used extensively, the adverse effects on liver cytochrome P450 (CYP450) enzymes after oral exposure are not clear. In this study, we determined the effects and mechanisms of action of nano- and micro-copper on the expression and activity of CYP450 enzymes in rat liver. Rats were orally exposed to micro-copper (400 mg/kg), Cu ion (100 mg/kg), or nano-copper (100, 200 and 400 mg/kg) daily for seven consecutive days. Histopathological, inflammatory and oxidative stress were measured in the livers of all rats. The mRNA levels and activity of CYP450 enzymes, as well as the mRNA levels of select nuclear receptors, were determined. Exposure to nano-copper (400 mg/kg) induced significant oxidative stress and inflammation relative to the controls, indicated by increased levels of interleukin (IL)-2, IL-6, interferon (IFN)-γ, macrophage inflammatory protein (MIP-1), total antioxidant capacity (T-AOC), malondialdehyde (MDA), inducible nitric oxide synthase (iNOS) and nitric oxide (NO) after exposure. The levels of mRNA expression of pregnane X receptor (PXR), constitutive androstane receptor (CAR) and aryl hydrocarbon receptor (AHR) were significantly decreased in 400 mg/kg nano-copper treated rats. Nano-copper activated the expression of the NF-kappa B (NF-κB), mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription (STAT)3 signaling pathways. Nano-copper decreased the mRNA expression and activity of CYP 1A2, 2C11, 2D6, 2E1 and 3A4 in a dose-dependent manner. The adverse effects of micro-copper are less severe than those of nano-copper on the CYP450 enzymes of rats after oral exposure. Ingestion of large amounts of nano-copper in animals severely affects the drug metabolism of the liver by inhibiting the expression of various CYP450 enzymes, which increases the risk of drug-drug interactions in animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.