Chemotherapy is majorly used for the treatment of many cancers, including lymphoma. However, cytotoxic drugs, utilized in chemotherapy, can induce various side effects on normal tissues because of their non-specific distribution in the body. Natural platelets are used as drug carriers because of their biocompatibility and specific targeting to vascular disorders, such as cancer, inflammation, and thrombosis. In this work, doxorubicin (DOX) was loaded in natural platelets for treatment of lymphoma. Results showed that DOX was loaded into platelets with high drug loading and encapsulation efficiency. DOX did not significantly induce morphological and functional changes in platelets. DOX-platelet facilitated intracellular drug accumulation through “tumor cell-induced platelet aggregation” and released DOX into the medium in a pH-controlled manner. This phenomenon reduced the adverse effects and enhanced the therapeutic efficacy. The growth inhibition of lymphoma Raji cells was enhanced, and the cardiotoxicity of DOX was reduced when DOX was loaded in platelets. DOX-platelet improved the anti-tumor activity of DOX by regulating the expression of apoptosis-related genes. Thus, platelets can serve as potential drug carriers to deliver DOX for clinical treatment of lymphoma.
WO-mediated photodynamic therapy (PDT) and photothermal therapy (PTT) are limited by the easily oxidized property and tumor hypoxia. Here, we report the development of platelet membranes as nanocarriers to co-load WO nanoparticles (NPs) and metformin (PM-WO-Met NPs). Platelet membranes can protect WO from oxidation and immune evasion, and increase the accumulation of WO in tumor sites via the passive EPR effect and active adhesion between platelets and cancer cells. The introduction of metformin (Met), a typical anti-diabetic drug, can alleviate the tumor hypoxia through reducing oxygen consumption. As a result, ROS and heat generation are both greatly increased, as revealed by ROS/hypoxia imaging in vitro, IR thermal imaging in vivo and PET imaging in vivo. PM-WO-Met NPs show the improved therapeutic effects with greatly inhibited tumor growth and induced tumor cell apoptosis. Therefore, our work provides a novel strategy for simultaneous enhanced PDT and PTT, which is promising in bioapplication. STATEMENTE OF SIGNIFICANCE: WO-mediated photodynamic therapy and photothermal therapy are limited by the poor delivery of nanoparticles to tumors, the easily oxidized property, and tumor hypoxia environment, which will induce tumor treatment failure. Herein, we report the development of platelet membranes as nanocarriers to co-load WO nanoparticles and metformin (PM-WO-Met NPs). Platelet membranes can protect WO from oxidation and immune evasion, and increase the accumulation of WO in tumor sites via the passive EPR effect and active adhesion. Metformin can alleviate the tumor hypoxia through reducing oxygen consumption. Hence, ROS and heat generation are both greatly increased. PM-WO-Met NPs show the improved therapeutic effects with greatly inhibited tumor growth and induced apoptosis. Therefore, our work provides a novel strategy in bioapplication.
B-cell lymphoma accounts for approximately 85% of all adult non-Hodgkin's lymphoma cases. Doxorubicin (DOX) is an indispensable drug for the treatment of non-Hodgkin's lymphoma. However, DOX causes severe cardiotoxicity, which limits its use in conventional treatment strategies. In this study, we developed a novel drug delivery system for lymphoma treatment: DOX-loaded platelets that were conjugated with anti-CD22 monoclonal antibodies (mAbs) (DOX–platelet–CD22). Platelets are bio- and immune-compatible drug carriers that can prolong the circulation time of drugs. Anti-CD22 mAb-labeled platelets can precisely deliver DOX to tumor cells. Our in vitro and in vivo experiments showed the enhanced antitumor activity and attenuated cardiotoxicity of DOX when delivered as DOX–platelet–CD22. Compared with other delivery systems, the uptake of DOX–platelet–CD22 by macrophage-like cells decreased. Moreover, DOX–platelet–CD22 showed platelet properties, such as tumor cell-induced platelet aggregation. Therefore, targeted chemotherapy that is mediated by DOX–platelet–CD22 is a promising option for lymphoma treatment.
The myeloid-derived suppressor cell (MDSC)-mediated immunosuppressive tumor microenvironment (TME), where tumor hypoxia counts for much, has greatly compromised the outcome of cancer immunotherapy. Here, we demonstrated a strategy for selectively clearing intratumoral MDSCs. Specifically, 780) and metformin (Met) were coloaded into mesoporous silica nanoparticles (MSNs) with CeO 2 as the gatekeepers. Controlled release of cargos was achieved upon etching CeO 2 with endogenous H 2 O 2 . Apart from the drug release, oxygen (O 2 ) was also generated in this process. Importantly, the engagement of Met significantly inhibited mitochondrial respiration, thus working like an O 2 economizer. Consequently, the populations and functions of tumor-infiltrated MDSCs were both dramatically reduced through selective alleviation of hypoxia at tumor sites, thus contributing to boosted immune responses. Additionally, the accumulated O 2 enhanced IR780-mediated photodynamic therapy, which synergistically strengthened the antitumor efficacy of the platform. To the best of our knowledge, this is the first time to employ an O 2 -generated and -economized nanoplatform for selectively anergizing MDSC-mediated immunosuppression. We expect that this strategy will shed new light on the clinical cancer immunotherapy treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.