Phosphorus (P) stemming from biodiesel and/or lubricant oil additives is unavoidable in real diesel exhausts and deactivates gradually the Cu-SSZ-13 zeolite catalyst for ammonia-assisted selective catalytic NO x reduction (NH3-SCR). Here, the deactivation mechanism of Cu-SSZ-13 by P-poisoning was investigated by ex situ examination of the structural changes and by in situ probing the dynamics and redox of Cu active sites via a combination of impedance spectroscopy, diffuse reflection infrared Fourier transform spectroscopy, and ultraviolet–visible spectroscopy. We unveiled that strong interactions between Cu and P led to not only a loss of Cu active sites for catalytic turnovers but also a restricted dynamic motion of Cu species during low-temperature NH3-SCR catalysis. Furthermore, the CuII ↔ CuI redox cycling of Cu sites, especially the CuI → CuII reoxidation half-cycle, was significantly inhibited, which can be attributed to the restricted Cu motion by P-poisoning disabling the formation of key dimeric Cu intermediates. As a result, the NH3-SCR activity at low temperatures (200 °C and below) decreased slightly for the mildly poisoned Cu-SSZ-13 and considerably for the severely poisoned Cu-SSZ-13.
Phosphorus (P) originating from lubricant oil additives or biofuels is an emerging chemical poison in catalytic systems for automotive exhaust after-treatment. Here, we demonstrate that P-poisoning led to severe deactivation of small-pore Pd-SSZ-13 zeolites (with CHA framework) as passive NO x adsorbers (PNA) and CO oxidation catalysts for cold-start exhaust purification applications. Deactivation mechanisms of P-poisoning were unraveled by comparatively examining the P-free and P-loaded Pd-SSZ-13 zeolites using transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), nuclear magnetic resonance (NMR), temperature-programmed reduction by hydrogen (H2-TPR), CO pulse adsorption, temperature-programmed desorption using NH3 as a probe molecule (NH3-TPD), ultraviolet/visible light (UV/vis) spectroscopy, and in situ diffuse relectance infrared Fourier transform spectroscopy (DRIFTS). The loss of isolated Pd sitesnamely, [Pd(OH)]+ and Pd2+ (located in the eight- and six-membered rings of CHA framework, respectively)was revealed to be largely responsible for the deactivation of Pd-SSZ-13 in passive NO x adsorption and catalytic CO oxidation. In situ DRIFTS studies using NO or CO as a probe molecule suggest that [Pd(OH)]+ was more susceptible to P-poisoning than Pd2+. Specifically, P-poisoning led to a migration of [Pd(OH)]+ from cationic exchange sites to the zeolite surface, forming inactive metaphosphate (i.e., [Pd(OH)]+PO3 –) and bulk PdO x species at high temperatures. In contrast, P-poisoning of Pd2+ sites proceeded via a sequential transformation to [Pd(OH)]+ first, and then to [Pd(OH)]+PO3 – and bulk PdO x . This study provides a comprehensive mechanistic understanding on the deactivation of Pd-SSZ-13 by P-poisoning, and may guide the design of high-performance, phosphorus-resistant Pd-zeolite catalysts for cold-start exhaust after-treatment.
Dynamic motion of NH3-solvated Cu sites in Cu-chabazite (Cu-CHA) zeolites, which are the most promising and state-of-the-art catalysts for ammonia-assisted selective reduction of NOx (NH3-SCR) in the aftertreatment of diesel exhausts, represents a unique phenomenon linking heterogeneous and homogeneous catalysis. This review first summarizes recent advances in the theoretical understanding of such low-temperature Cu dynamics. Specifically, evidence of both intra-cage and inter-cage Cu motions, given by ab initio molecular dynamics (AIMD) or metadynamics simulations, will be highlighted. Then, we will show how, among others, synchrotron-based X-ray spectroscopy, vibrational and optical spectroscopy (diffuse reflection infrared Fourier transform spectroscopy (DRIFTS) and diffuse reflection ultraviolet-visible spectroscopy (DRUVS)), electron paramagnetic spectroscopy (EPR), and impedance spectroscopy (IS) can be combined and complement each other to follow the evolution of coordinative environment and the local structure of Cu centers during low-temperature NH3-SCR reactions. Furthermore, the essential role of Cu dynamics in the tuning of low-temperature Cu redox, in the preparation of highly dispersed Cu-CHA catalysts by solid-state ion exchange method, and in the direct monitoring of NH3 storage and conversion will be presented. Based on the achieved mechanistic insights, we will discuss briefly the new perspectives in manipulating Cu dynamics to improve low-temperature NH3-SCR efficiency as well as in the understanding of other important reactions, such as selective methane-to-methanol oxidation and ethene dimerization, catalyzed by metal ion-exchanged zeolites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.