Emerging evidence has demonstrated that long noncoding RNAs (lncRNAs) mediate the development of esophageal squamous cell carcinoma (ESCC) via various pathophysiological pathways. This study explored the impact of the lncRNA FOXD2-AS1 on cisplatin resistance in ESCC and its possible mechanisms. Upregulation of FOXD2-AS was detected in patients with ESCC and ESCC cells that are resistant to cisplatin. In an in vitro assay, knockdown of FOXD2-AS1 noticeably inhibited cell invasion and growth, triggered cell death, and repressed the stimulation of the Akt/mTOR axis in cisplatin-resistant ESCC cells (TE-1/DDP). Conversely, the overexpression of FOXD2-AS1 remarkably increased cell invasion and growth, repressed cell death, and triggered the stimulation of the Akt/mTOR axis in TE-1/DDP cells. These findings, along with bioinformatics and validation tests, showed that FOXD2-AS1 targeted miR-195 by acting as a competing endogenous RNA. FOXD2-AS1/miR-195/Akt/mTOR axis plays a crucial role in resistance to cisplatin in ESCC cells, offering an innovative strategy to treat ESCC.
Background: Targeted programmed cell death protein 1 (PD-1) therapy could effectively improve the long-term prognosis of patients with non-small cell lung cancer (NSCLC). The role of PD-1 targets in the progression of NSCLC has not been fully revealed. Methods:The differentially expressed genes (DEGs) in patients' blood after NSCLC treatment with PD-1 blocker nivolumab in the GSE141479 dataset were analyzed by GEO2R and identified in the TCGA database. The mechanism of action involved in the PD-1 target molecules via the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). The protein-protein interaction (PPI) network shows the relationship between PD-1 target molecules. The factors affecting the prognosis of NSCLC patients were identified via the COX regression analysis and survival analysis to build the risk model and nomogram. Results: There were 64 DEGs in patients' blood after nivolumab treatment and 48 DEGs in NSCLC tissues. The PD-1 target molecules involved cell proliferation, DNA replication, cell cycle, lung cancer, and other cellular processes. The prognostic factors CCNA2, CHEK1, DLGAP5, E2F8, FOXM1, HIST1H2BH, HJURP, MKI67, PLK1, TPX2, and TYMS, and the independent factors HIST1H2BH and PLK1, influenced the prognosis of NSCLC patients. HIST1H2BH and PLK1 were overexpressed in LUAD and LUSC tissues. The elevated expression levels of HIST1H2BH and PLK1 were related to the overall survival (OS) and the progression-free survival of NSCLC patients. High-risk NSCLC patients had a poor prognosis and were an independent factor influencing the poor prognosis of NSCLC patients. The high-risk model group was enriched with signaling mechanisms such as cell cycle, DNA replication, and homologous recombination.Conclusions: The risk model based on PD-1 target molecules was helpful to assess the prognosis of NSCLC patients. HIST1H2BH and PLK1 might become prognostic biomarkers of NSCLC patients.
C110 oil well casing tubes should have high strength and corrosion resistance which is commonly used for deep wells operation containing corrosive media. In this paper, the microstructure evolution of a kind of semi-macro segregation originated banded structure in casing tubes is studied under different heat treatments. It is shown that the characteristics of the banded structure will change significantly in subsequent hot working and heat treatment processes. For the hot-rolled ones, the banded structure is composed of pearlite plus bainite. After quenching, it evolves into martensite band with high concentration solute elements. Finally, the banded structure will change into a carbide banding under the following tempering process. The temperature and cooling rate of the tempering practice show an obvious effect on the final band structure. To improve anti-SSC (sulfide stress corrosion cracking) performance, the favorable QT (quenching and tempering) practice for C110 steel should be a higher tempering temperature and a quicker cooling rate, from which the banded structure defects can be decreased together with an obvious improvement of the tube wall hardness uniformity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.