Two-inch-sized perovskite crystals, CH3 NH3 PbX3 (X=I, Br, Cl), with high crystalline quality are prepared by a solution-grown strategy. The availability of large perovskite crystals is expected to transform its broad applications in photovoltaics, optoelectronics, lasers, photodetectors, LEDs, etc., just as crystalline silicon has done in revolutionizing the modern electronics and photovoltaic industries.
The efficiency of planar CH3NH3PbI3 perovskite solar cells has been improved up to 19.62% using an ionic liquid to modify the TiO2 electron transport layer, and the J–V hysteresis is completely eliminated.
The trap states at grain boundaries (GBs) within polycrystalline perovskite films deteriorate their optoelectronic properties, making GB engineering particularly important for stable high-performance optoelectronic devices. It is demonstrated that trap states within bulk films can be effectively passivated by semiconducting molecules with Lewis acid or base functional groups. The perovskite crystallization kinetics are studied using in situ synchrotron-based grazing-incidence X-ray scattering to explore the film formation mechanism. A model of the passivation mechanism is proposed to understand how the molecules simultaneously passivate the Pb-I antisite defects and vacancies created by under-coordinated Pb atoms. In addition, it also explains how the energy offset between the semiconducting molecules and the perovskite influences trap states and intergrain carrier transport. The superior optoelectronic properties are attained by optimizing the molecular passivation treatments. These benefits are translated into significant enhancements of the power conversion efficiencies to 19.3%, as well as improved environmental and thermal stability of solar cells. The passivated devices without encapsulation degrade only by ≈13% after 40 d of exposure in 50% relative humidity at room temperature, and only ≈10% after 24 h at 80 °C in controlled environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.