Recently, many unsupervised deep learning methods have been proposed to learn clustering with unlabelled data. By introducing data augmentation, most of the latest methods look into deep clustering from the perspective that the original image and its transformation should share similar semantic clustering assignment. However, the representation features could be quite different even they are assigned to the same cluster since softmax function is only sensitive to the maximum value. This may result in high intra-class diversities in the representation feature space, which will lead to unstable local optimal and thus harm the clustering performance. To address this drawback, we proposed Deep Robust Clustering (DRC). Different from existing methods, DRC looks into deep clustering from two perspectives of both semantic clustering assignment and representation feature, which can increase inter-class diversities and decrease intra-class diversities simultaneously. Furthermore, we summarized a general framework that can turn any maximizing mutual information into minimizing contrastive loss by investigating the internal relationship between mutual information and contrastive learning. And we successfully applied it in DRC to learn invariant features and robust clusters. Extensive experiments on six widely-adopted deep clustering benchmarks demonstrate the superiority of DRC in both stability and accuracy. e.g., attaining 71.6% mean accuracy on CIFAR-10, which is 7.1% higher than state-of-the-art results.
Nearest neighbor search aims to obtain the samples in the database with the smallest distances from them to the queries, which is a basic task in a range of fields, including computer vision and data mining. Hashing is one of the most widely used methods for its computational and storage efficiency. With the development of deep learning, deep hashing methods show more advantages than traditional methods. In this survey, we detailedly investigate current deep hashing algorithms including deep supervised hashing and deep unsupervised hashing. Specifically, we categorize deep supervised hashing methods into pairwise methods, ranking-based methods, pointwise methods as well as quantization according to how measuring the similarities of the learned hash codes. Moreover, deep unsupervised hashing is categorized into similarity reconstruction-based methods, pseudo-label-based methods and prediction-free self-supervised learning-based methods based on their semantic learning manners. We also introduce three related important topics including semi-supervised deep hashing, domain adaption deep hashing and multi-modal deep hashing. Meanwhile, we present some commonly used public datasets and the scheme to measure the performance of deep hashing algorithms. Finally, we discuss some potential research directions in conclusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.