BACKGROUND Bronchopulmonary dysplasia (BPD) is not merely a chronic lung disease, but a systemic condition with multiple organs implications predominantly associated with hyperoxia exposure. Despite advances in current management strategies, limited progress has been made in reducing the BPD-related systemic damage. Meanwhile, although the protective effects of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) or their exosomes on hyperoxia-induced lung injury have been explored by many researchers, the underlying mechanism has not been addressed in detail, and few studies have focused on the therapeutic effect on systemic multiple organ injury. AIM To investigate whether hUC-MSC intratracheal administration could attenuate hyperoxia-induced lung, heart, and kidney injuries and the underlying regulatory mechanisms. METHODS Neonatal rats were exposed to hyperoxia (80% O 2 ), treated with hUC-MSCs intratracheal (iT) or intraperitoneal (iP) on postnatal day 7, and harvested on postnatal day 21. The tissue sections of the lung, heart, and kidney were analyzed morphometrically. Protein contents of the bronchoalveolar lavage fluid (BALF), myeloperoxidase (MPO) expression, and malondialdehyde (MDA) levels were examined. Pulmonary inflammatory cytokines were measured via enzyme-linked immunosorbent assay. A comparative transcriptomic analysis of differentially expressed genes (DEGs) in lung tissue was conducted via RNA-sequencing. Subsequently, we performed reverse transcription-quantitative polymerase chain reaction and western blot analysis to explore the expression of target mRNA and proteins related to inflammatory and oxidative responses. RESULTS iT hUC-MSCs administration improved pulmonary alveolarization and angiogenesis ( P < 0.01, P < 0.01, P < 0.001, and P < 0.05 for mean linear intercept, septal counts, vascular medial thickness index, and microvessel density respectively). Meanwhile, treatment with hUC-MSCs iT ame liorated right ventricular hypertrophy (for Fulton’s index, P < 0.01), and relieved reduced nephrogenic zone width ( P < 0.01) and glomerular diameter ( P < 0.001) in kidneys. Among the beneficial effects, a reduction of BALF protein, MPO, and MDA was observed in hUC-MSCs groups ( P < 0.01, P < 0.001, and P < 0.05 respectively). Increased pro-inflammatory cytokines tumor necrosis factor-alpha, interleukin (IL)-1β, and IL-6 expression observed in the hyperoxia group were significantly attenuated by hUC-MSCs administration ( P < 0.01, P < 0.001, and P < 0.05 re...
Adipose-derived mesenchymal stem cells (A-MSCs) are promising cellular therapies for the treatment of immune-mediated diseases. Non-gene editing technologies can improve the immune regulatory function of A-MSCs. Our preliminary experiments revealed that an active form of vitamin B6—pyridoxal-5′-phosphate (PLP)—plays an important role in regulating gene expression and cytokine secretion in A-MSCs in vivo. To further clarify the effect of PLP on receptors and cytokines related to the immune regulatory function of A-MSCs, a series of experiments were designed to verify the relationships between PLP and A-MSCs in vitro. Initially, A-MSCs were obtained, and cytokine secretion and the expression of IDO1, NF-κB, and Toll-like receptors in PLP-stimulated A-MSCs were evaluated. In addition, coculture was used to detect A-MSCs-mediated apoptosis of CD3+CD8+ T lymphocytes. These results showed that A-MSCs stimulated with PLP were highly proliferative, consistent with their pluripotent capacity. Further, the surface receptors TLR3, TLR4, IDO1, and NF-κB were upregulated, while TLR6 was downregulated. Concurrently, A-MSCs preconditioned with PLP had the greatest inhibitory effect on CD3+CD8+ T lymphocyte proliferation, indicating that PLP altered the immune regulatory function of A-MSCs through the regulation of TLRs and IDO1 expression.
BACKGROUND Motion sickness (MS) is a disease that occurs during unbalanced movement, characterized by gastrointestinal symptoms and autonomic nervous system activation. Current clinical treatments for MS are limited. Recent evidence indicates that the levels of pro-inflammatory cytokines increase during MS and are associated with an inner ear immune imbalance. In the present study, mesenchymal stem cells (MSCs) have been shown to exert strong immuno-suppressive effects. AIM To explore whether umbilical cord-derived mesenchymal stem cells (UC-MSCs) can prevent the occurrence of MS, and the underlying mechanism regulated by MSCs in a mouse model of MS. METHODS A total of 144 (equal numbers of males and females) 5wkold BALB/c mice were randomly divided into five groups: Normal group ( n = 16), MS group ( n = 32), MSCs group ( n = 32), MS + MSCs group ( n = 32), and MS + AS101/MSCs group ( n = 32). The MSCs group ( n = 32), MS + MSCs group ( n = 32), and MS + AS101/MSCs group ( n = 32) were preventively transplanted with UC-MSCs or AS101-treated UC-MSCs (1 × 10 6 cells/mouse). Mice in the MS ( n = 32), MS + MSCs, and MS + AS101/MSCs groups were subjected to rotation on a centrifuge for 10 min at 8 × g /min for MS model establishment on days 3, 5, 8, and 10 after UC-MSCs injection. The Morris water maze (MWM) test was used to observe the symptom of dizziness. Enzyme-linked immunosorbent assay (ELISA) and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were used to detect the levels of inflammatory cytokines in mice peripheral blood and the petrous part of the temporal bone samples. Western blot analysis was performed to analyze the JAK2/STAT3 signaling pathway in the cochlear tissues. Histological examination was performed by hematoxylin and eosin (HE) staining for conventional morphological evaluation in the petrous part of temporal bone samples. RESULTS The MWM test demonstrated that UC-MSCs improved the symptoms of MS. The MS + MSCs group was faster than the MS group on days 3 and 5 ( P = 0.036 and P = 0.002, respectively). ELISA and RT-qPCR showed that the serum and mRNA levels of interleukin-10 (IL-10) in the cochlear tissues were increased after transplantation with UC-MSCs (MS + MSCs group vs MS group at 3 and 5 d, P = 0.002 and c P < 0.001, respectively). RT-qPCR results confirmed a significant increase in IL-10 levels at four time points (MS + MSCs group vs MS group, P = 0.009, ...
Background Precursor B-cell acute lymphoblastic leukemia (pre-B ALL) is the most common hematological malignancy in children. Cellular metabolic reorganization is closely related to the progression and treatment of leukemia. We found that the level of 1,5-anhydroglucitol (1,5-AG), which is structurally similar to glucose, was elevated in children with pre-B ALL. However, the effect of 1,5-AG on pre-B ALL was unclear. Here, we aimed to reveal the roles and mechanisms of 1,5-AG in pre-B ALL progression. Methods The peripheral blood plasma level of children with initial diagnosis of pre-B ALL and that of healthy children was measured using untargeted metabolomic analysis. Cell Counting Kit-8 assay, RNA sequencing, siRNA transfection, real-time quantitative PCR, and western blot were performed using pre-B ALL cell lines Reh and HAL-01. Cell cycle, cell apoptosis, ROS levels, and the positivity rate of CD19 were assessed using flow cytometry. Oxygen consumption rates and extracellular acidification rate were measured using XFe24 Extracellular Flux Analyzer. The lactate and nicotinamide adenine dinucleotide phosphate levels were measured using kits. The effect of 1,5-AG on pre-B ALL progression was verified using the In Vivo Imaging System in a xenotransplantation leukemia model. Results We confirmed that 1,5-AG promoted the proliferation, viability, and intracellular glycolysis of pre-B ALL cells. Mechanistically, 1,5-AG promotes glycolysis while inhibiting mitochondrial respiration by upregulating pyruvate dehydrogenase kinase 4 (PDK4). Furthermore, high levels of intracellular glycolysis promote pre-B ALL progression by activating the reactive oxygen species (ROS)-dependent mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway. Conversely, N-acetylcysteine or vitamin C, an antioxidant, effectively inhibited 1,5-AG-mediated progression of leukemia cells. Conclusions Our study reveals a previously undiscovered role of 1,5-AG in pre-B ALL, which contributes to an in-depth understanding of anaerobic glycolysis in the progression of pre-B ALL and provides new targets for the clinical treatment of pre-B ALL.
To increase the potential and effectiveness of three-dimensional (3D) mesenchymal stem cells (MSCs) for clinical applications, this study explored the effects of short cryo-temperature pretreatment on MSC function. Adipose-derived MSCs (A-MSCs) were cultured via the ordinary monolayer method and 3D hanging drop spheroid method. When the cells adhered to the wall or formed a spheroid, they were subjected to hypothermic stress at 4°C for 1 h and then divided into three recovery periods at 37°C, specifically 0, 12, and 24 h. The control group was not subjected to any treatment throughout the study. Monolayer and 3D spheroid A-MSCs were analyzed via RNA sequencing after hypothermic stress at 4°C for 1 h. Subsequently, each group of cells was collected and subjected to phenotype identification via flow cytometry, and mRNA expression was detected via reverse transcription–quantitative polymerase chain reaction analysis. Western blot analysis was performed to analyze the PI3K-AKT signaling pathway in A-MSCs. The effects of A-MSCs on angiogenesis in vivo were examined using a chick chorioallantoic membrane assay. Transwell assays were performed to determine whether the culture supernatant from each group could induce the chemotaxis of human umbilical vein endothelial cells (HUVECs). Three-dimensional spheroid culture did not change the phenotype of A-MSCs. The expression of fibroblast growth factors, hepatocyte growth factors, and other angiogenesis-related factors in A-MSCs was upregulated. A-MSCs subjected to hypothermic stress promoted angiogenesis under both monolayer and 3D spheroid cultures. Moreover, the chemotaxis of HUVECs to the 3D spheroid culture supernatant increased substantially. Short cryo-temperature pretreatment could stimulate 3D spheroid A-MSCs and activate the PI3K-AKT pathway. This approach has the advantages of promoting angiogenesis and maintaining cell viability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.