Operation state calculation (OSC) provides safe operating boundaries for power systems. The operators rely on the software-aid OSC results to dispatch the generators for grid control. Currently, the OSC workload has increased dramatically, as the power grid structure expands rapidly to mitigate renewable source integration. However, the OSC is processed with a lot of manual interventions in most dispatching centers, which makes the OSC error-prone and personnel-experience oriented. Therefore, it is crucial to upgrade the current OSC in an automatic mode for efficiency and quality improvements. An essential process in the OSC is the tie-line power (TP) adjustment. In this paper, a new TP adjustment method is proposed using an adaptive mapping strategy and a Markov Decision Process (MDP) formulation. Then, a model-free deep reinforcement learning (DRL) algorithm is proposed to solve the formulated MDP and learn an optimal adjustment strategy. The improvement techniques of ''stepwise training'' and ''prioritized target replay'' are included to decompose the large-scale complex problems and improve the training efficiency. Finally, five experiments are conducted on the IEEE 39-bus system and an actual 2725-bus power grid of China for the effectiveness demonstration. INDEX TERMS Operation state calculation, tie-line power adjustment, deep reinforcement learning, stepwise training, prioritized target replay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.