Visual-based object detection and understanding is an important problem in computer vision and signal processing. Due to their advantages of high mobility and easy deployment, unmanned aerial vehicles (UAV) have become a flexible monitoring platform in recent years. However, visible-light-based methods are often greatly influenced by the environment. As a result, a single type of feature derived from aerial monitoring videos is often insufficient to characterize variations among different abnormal crowd behaviors. To address this, we propose combining two types of features to better represent behavior, namely, multitask cascading CNN (MC-CNN) and multiscale infrared optical flow (MIR-OF), capturing both crowd density and average speed and the appearances of the crowd behaviors, respectively. First, an infrared (IR) camera and Nvidia Jetson TX1 were chosen as an infrared vision system. Since there are no published infrared-based aerial abnormal-behavior datasets, we provide a new infrared aerial dataset named the IR-flying dataset, which includes sample pictures and videos in different scenes of public areas. Second, MC-CNN was used to estimate the crowd density. Third, MIR-OF was designed to characterize the average speed of crowd. Finally, considering two typical abnormal crowd behaviors of crowd aggregating and crowd escaping, the experimental results show that the monitoring UAV system can detect abnormal crowd behaviors in public areas effectively.
Visual Query Answering (VQA) is of great significance in offering people convenience: one can raise a question for details of objects, or high-level understanding about the scene, over an image. This paper proposes a novel method to address the VQA problem. In contrast to prior works, our method that targets single scene VQA, replies on graphbased techniques and involves reasoning. In a nutshell, our approach is centered on three graphs. The first graph, referred to as inference graph G I , is constructed via learning over labeled data. The other two graphs, referred to as query graph Q and entity-attribute graph G EA , are generated from natural language query Q nl and image Img, that are issued from users, respectively. As G EA often does not take sufficient information to answer Q, we develop techniques to infer missing information of G EA with G I . Based on G EA and Q, we provide techniques to find matches of Q in G EA , as the answer of Q nl in Img. Unlike commonly used VQA methods that are based on end-to-end neural networks, our graph-based method shows well-designed reasoning capability, and thus is highly interpretable. We also create a dataset on soccer match (Soccer-VQA) with rich annotations. The experimental results show that our approach outperforms the state-of-the-art method and has high potential for future investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.