NFECTIONS ARE THE MOST COMMONcause of death in premature infants andamajorthreatforpooroutcomes. 1 Late-onset sepsis, ie, infections arising after the perinatal period, are mainly nosocomial and affect 21% of very lowbirth-weight (VLBW) (Ͻ1500 g) neonates, with many more undergoing empirical antibiotic treatment. 2 In VLBW neonates, the digestive tract is a major site for colonization and systemic translocation by many pathogens. Also, prolonged Author Affiliations and Task Force Members are listed at the end of this article.
Endurance and strength training are established as distinct exercise modalities, increasing either mitochondrial density or myofibrillar units. Recent research, however, suggests that mitochondrial biogenesis is stimulated by both training modalities. To test the training "specificity" hypothesis, mitochondrial respiration was studied in permeabilized muscle fibers from 25 sedentary adults after endurance (ET) or strength training (ST) in normoxia or hypoxia [fraction of inspired oxygen (Fi(O(2))) = 21% or 13.5%]. Biopsies were taken from the musculus vastus lateralis, and cycle-ergometric incremental maximum oxygen uptake (VO(2max)) exercise tests were performed under normoxia, before and after the 10-wk training program. The main finding was a significant increase (P < 0.05) of fatty acid oxidation capacity per muscle mass, after endurance and strength training under normoxia [2.6- and 2.4-fold for endurance training normoxia group (ET(N)) and strength training normoxia group (ST(N)); n = 8 and 3] and hypoxia [2.0-fold for the endurance training hypoxia group (ET(H)) and strength training hypoxia group (ST(H)); n = 7 and 7], and higher coupling control of oxidative phosphorylation. The enhanced lipid oxidative phosphorylation (OXPHOS) capacity was mainly (87%) due to qualitative mitochondrial changes increasing the relative capacity for fatty acid oxidation (P < 0.01). Mitochondrial tissue-density contributed to a smaller extent (13%), reflected by the gain in muscle mass-specific respiratory capacity with a physiological substrate cocktail (glutamate, malate, succinate, and octanoylcarnitine). No significant increase was observed in mitochondrial DNA (mtDNA) content. Physiological OXPHOS capacity increased significantly in ET(N) (P < 0.01), with the same trend in ET(H) and ST(H) (P < 0.1). The limitation of flux by the phosphorylation system was diminished after training. Importantly, key mitochondrial adaptations were similar after endurance and strength training, regardless of normoxic or hypoxic exercise. The transition from a sedentary to an active lifestyle induced muscular changes of mitochondrial quality representative of mitochondrial health.
, for the SLI Trial Investigators abstract BACKGROUND: Studies suggest that giving newly born preterm infants sustained lung inflation (SLI) may decrease their need for mechanical ventilation (MV) and improve their respiratory outcomes.
Prophylactic oral administration of bLF reduces the incidence of IFI in preterm VLBW neonates. No effect is seen on colonization. The protective effect on IFI is likely due to limitation of ability of fungal colonies to progress toward invasion and systemic disease in colonized infants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.