Obesity and type 2 diabetes are associated with low-grade inflammation and specific 34 changes in gut microbiota composition [1][2][3][4][5][6][7] . We previously demonstrated that administration 35 of Akkermansia muciniphila prevents the development of obesity and associated 36 complications 8 . However, its mechanisms of action remain unclear, whilst the sensitivity of 37 A. muciniphila to oxygen and the presence of animal-derived compounds in its growth 38 medium currently limit the development of translational approaches for human medicine 9 . 39Here we addressed these issues by showing that A. muciniphila retains its efficacy when Akkermansia muciniphila is one of the most abundant members of the human gut 53 microbiota, representing between 1 and 5% of our intestinal microbes 10,11 to improve glucose intolerance and insulin resistance regardless of the growth medium used and 71 independently of food intake ( Fig. 1a-g). 72 We previously showed that autoclaving A. muciniphila abolished its beneficial effects 8 . (Fig. 1a-c and Supplemental Fig. 1a-c). In both sets of 81 experiments, we found that mice treated with pasteurized A. muciniphila displayed a much lower 82 glucose intolerance and insulin concentration when compared to the HFD group, resulting in a 83 lower insulin resistance (IR) index (Fig. 1d-g and Supplemental Fig. 1d-g). Treatment with 84 pasteurized A. muciniphila also led to greater goblet cell density in the ileum when compared to 85 ND-fed mice (Fig. 1h), suggesting a higher mucus production, while normalizing the mean 86 adipocyte diameter (Fig. 2a-b) and significantly lowering plasma leptin when compared to HFD-87 fed mice (Fig. 2c). These effects were not observed in mice treated with live A. muciniphila. A 88 similar trend could be observed for plasma resistin (Supplemental Fig. 1h), thereby suggesting 89 improved insulin sensitivity, while plasma adiponectin remained unaffected in all conditions 90 (Supplemental Fig. 1i). We found that mice treated with pasteurized A. muciniphila had a higher 91 fecal caloric content when compared to all other groups (Fig. 2d), suggesting a lower energy (Fig. 2e-g). This resulted in a normalization of the HFD-induced shift of 37% with the 104 pasteurized bacterium, and 17% with the live bacterium ( Fig. 2f). 105By comparing the metabolic profiles of the different groups, we found that the shift 106 induced by pasteurized A. muciniphila was mainly associated with trimethylamine (TMA) and TMA to TMAO, a metabolite associated with atherosclerosis 19,20 . While exposure to a HFD led 114 to a two-fold higher Fmo3 expression when compared to ND-fed mice, treatment with 115 pasteurized A. muciniphila reversed this effect (Fig. 2j) Fmo3 expression were not associated with a modification of plasma TMA and TMAO, as all 121 HFD-fed group displayed similar concentrations for both metabolites (Fig. 2k,l) (Fig. 3a), but not cells expressing TLR5, TLR9 or the NOD2 receptor (Fig. 3b-131 d). 132Genomic and proteomic analyses of A. muciniphila identified p...
Metabolic syndrome is characterized by a constellation of comorbidities that predispose individuals to an increased risk of developing cardiovascular pathologies as well as type 2 diabetes mellitus (T2DM)1. The gut microbiota is considered as a new key contributor involved in the onset of obesity-related disorders2. In humans, studies have provided evidence for a negative correlation between Akkermansia muciniphila abundance and overweight, obesity, untreated T2DM, or hypertension3–8. As the administration of A.muciniphila has never been investigated in humans, we conducted a randomized double-blind placebo-controlled pilot study in overweight/obese insulin resistant volunteers, 40 were enroled and 32 completed the trial. The primary endpoints were on safety, tolerability and metabolic parameters (i.e., insulin resistance, circulating lipids, visceral adiposity, body mass). The secondary outcomes were the gut barrier function (i.e., plasma lipopolysacharrides (LPS) and gut microbiota composition. In this single-center study, we demonstrated that daily oral supplementation of 1010 bacteria either alive or pasteurized A.muciniphila for 3 months was safe and well tolerated. Compared to the Placebo, pasteurized A.muciniphila improved insulin sensitivity (+28.62±7.02%, P=0.002), reduced insulinemia (-34.08±7.12%, P=0.006) and plasma total cholesterol (-8.68±2.38%, P=0.02). Pasteurized A.muciniphila supplementation slightly decreased body weight (-2.27±0.92kg, P=0.091) as compared to the Placebo group, and fat mass (-1.37±0.82kg, P=0.092) and hip circumference (-2.63±1.14cm, P = 0.091) as compared to baseline. After 3 months of supplementation, A.muciniphila reduced the levels of relevant blood markers of liver dysfunction and inflammation while the overall gut microbiome structure was unaffected. In conclusion, this proof-of-concept study (NCT02637115) shows that the intervention was safe and well-tolerated and that the supplementation with A.muciniphila improves several metabolic paramaters.
Gut microbiota contribute to host metabolic efficiency by increasing energy availability through the fermentation of dietary fiber and production of short-chain fatty acids (SCFAs) in the colon. SCFAs are proposed to stimulate secretion of the proglucagon (Gcg)-derived incretin hormone GLP-1, which stimulates insulin secretion (incretin response) and inhibits gastric emptying. We find that germ-free (GF) and antibiotic-treated mice, which have severely reduced SCFA levels, have increased basal GLP-1 levels in the plasma and increased Gcg expression in the colon. Increasing energy supply, either through colonization with polysaccharide-fermenting bacteria or through diet, suppressed colonic Gcg expression in GF mice. Increased GLP-1 levels in GF mice did not improve the incretin response but instead slowed intestinal transit. Thus, microbiota regulate the basal levels of GLP-1, and increasing these levels may be an adaptive response to insufficient energy availability in the colon that slows intestinal transit and allows for greater nutrient absorption.
Various metabolic disorders are associated with changes in inflammatory tone. Among the latest advances in the metabolism field, the discovery that gut microorganisms have a major role in host metabolism has revealed the possibility of a plethora of associations between gut bacteria and numerous diseases. However, to date, few mechanisms have been clearly established. Accumulating evidence indicates that the endocannabinoid system and related bioactive lipids strongly contribute to several physiological processes and are a characteristic of obesity, type 2 diabetes mellitus and inflammation. In this Review, we briefly define the gut microbiota as well as the endocannabinoid system and associated bioactive lipids. We discuss existing literature regarding interactions between gut microorganisms and the endocannabinoid system, focusing specifically on the triad of adipose tissue, gut bacteria and the endocannabinoid system in the context of obesity and the development of fat mass. We highlight gut-barrier function by discussing the role of specific factors considered to be putative 'gate keepers' or 'gate openers', and their role in the gut microbiota-endocannabinoid system axis. Finally, we briefly discuss data related to the different pharmacological strategies currently used to target the endocannabinoid system, in the context of cardiometabolic disorders and intestinal inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.