Abstract. The objective of this study was to develop new statistical models for genetic estimation of racing performances in German thoroughbreds. Analysed performance traits were "square root of rank at finish", "square root of distance to first placed horse in a race" and "log of earnings". These traits were found to be influenced by the carried weight, which was determined by the horse's earlier performance. Therefore, new traits were developed based on random regression models, which were independent from the carried weights. Heritabilities were first estimated for these created traits "new rank at finish" (h2 = 0.101) and "new distance to first placed horse in a race" (h2 = 0.142) by using two univariate animal models. When considering a linear regression of carried weights as fixed effect in the statistical model, heritabilities for "square root of rank at finish" (h2 = 0.086) and "square root of distance to first placed horse in a race" (h2 = 0.124) decreased. Breeding values of “new rank at finish” and "new distance to first placed horse in a race" were compared with breeding values of "square root of rank at finish" and "square root of distance to first placed horse in a race", in which carried weight was considered as fixed regression in the model. These two different models were compared by two criteria. Breeding values were overestimated for low performing thoroughbreds and underestimated for high performing horses when considering a linear regression of carried weights as fixed effect in the model. Statistical models considering new created traits ("new rank at finish" and "new distance to first placed horse in a race") which were independent of carried weights, showed better suitability for genetic estimation. Due to high genetic correlation with other traits and showing highest genetic variance a univariate animal model for the trait “new distance to first placed horse in a race” was recommended for genetic estimation.
Zusammenfassung Ziel der Untersuchungen war, Einflussfaktoren auf die Trächtigkeitsrate in der deutschen Vollblutzucht zu analysieren und insbesondere Maßnahmen zur Optimierung der Fruchtbarkeit des alternden Zuchthengstes herauszustellen. Material und Methoden: Es erfolgte eine Auswertung der Stammdaten und Deckdaten der deutschen Vollblutzucht aus den Jahren 1996–2009. Daten von 319 Deckhengsten, 6622 Zuchtstuten mit insgesamt 21 372 Trächtigkeiten am Ende der Zuchtsaison wurden einbezogen. Ergebnisse: Das Trächtigkeitsergebnis war signifikant beeinflusst durch das Hengst- und Stutenalter und den Monat der Bedeckung. Signifikante Interaktionen des Hengstalters mit der Anzahl gedeckter Stuten pro Decksaison und des Hengstalters mit dem Monat der Bedeckung wurden festgestellt. Sowohl mit zunehmendem Alter der Stuten und Hengste als auch mit fortschreitender Decksaison fällt die Trächtigkeitsrate ab. Alte Hengste (> 16 Jahre) erzielen signifikant höhere Trächtigkeitsraten, wenn sie hohe Belegungszahlen ( 12 Stuten) pro Decksaison erreichen. Im Ablauf der Decksaison sinken die von Hengsten über 16 Jahren erreichten Trächtigkeitsraten besonders deutlich am Ende der Zuchtsaison. Schlussfolgerung und klinische Relevanz: Um bei alten Hengsten hohe Trächtigkeitsraten zu erzielen, sollten die zu deckenden Stuten dem Hengst so früh wie möglich in der Decksaison zugeführt werden und Hengste über 16 Jahre sollten auch mit einer ausreichend hohen Anzahl Stuten in der Zucht eingesetzt werden.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.