The growth of nanocrystals (NCs) from metal oxide-based substrates with exposed high-energy facets is of particular importance for many important applications, such as solar cells as photoanodes due to the high reactivity of these facets. The hydrothermal method remains a current trend for the synthesis of metal oxide nanostructures in general and titanium dioxide (TiO2) in particular since the calcination of the resulting powder after the completion of the hydrothermal method no longer requires a high temperature. This work aims to use a rapid hydrothermal method to synthesize numerous TiO2-NCs, namely, TiO2 nanosheets (TiO2-NSs), TiO2 nanorods (TiO2-NRs), and nanoparticles (TiO2-NPs). In these ideas, a simple non-aqueous one-pot solvothermal method was employed to prepare TiO2-NSs using tetrabutyl titanate Ti(OBu)4 as a precursor and hydrofluoric acid (HF) as a morphology control agent. Ti(OBu)4 alone was subjected to alcoholysis in ethanol, yielding only pure nanoparticles (TiO2-NPs). Subsequently, in this work, the hazardous chemical HF was replaced by sodium fluoride (NaF) as a means of controlling morphology to produce TiO2-NRs. The latter method was required for the growth of high purity brookite TiO2 NRs structure, the most difficult TiO2 polymorph to synthesize. The fabricated components are then morphologically evaluated using equipment, such as transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), electron diffraction (SAED), and X-ray diffraction (XRD). In the results, the TEM image of the developed NCs shows the presence of TiO2-NSs with an average side length of about 20–30 nm and a thickness of 5–7 nm. In addition, the image TEM shows TiO2-NRs with diameters between 10 and 20 nm and lengths between 80 and 100 nm, together with crystals of smaller size. The phase of the crystals is good, confirmed by XRD. The anatase structure, typical of TiO2-NS and TiO2-NPs, and the high-purity brookite-TiO2-NRs structure, were evident in the produced nanocrystals, according to XRD. SAED patterns confirm that the synthesis of high quality single crystalline TiO2-NSs and TiO2-NRs with the exposed {001} facets are the exposed facets, which have the upper and lower dominant facets, high reactivity, high surface energy, and high surface area. TiO2-NSs and TiO2-NRs could be grown, corresponding to about 80% and 85% of the {001} outer surface area in the nanocrystal, respectively.
Perovskite halide has many advantages that attracted the attention of researchers in the last years, but many challenges prevent the use of halide perovskites in different applications. One of these challenges is the low thermal stability resulting in phase transitions with temperatures. Here, the photoluminescence (PL) characteristics and related phase transitions of different CH3NH3Pb(BrxI1−x)3 (MA(BrxI1−x)3)3 perovskites structures have been investigated under a wide temperature range. The work that has been conducted demonstrates that under temperature, the exciton behavior of the halide anions, I and Br, has a considerable impact on structural phases and the fluorescence process. The obtained results for the temperature dependence of PL for MAPb(BrxI1−x)3 showed a wide range of emission wavelengths, between 500–800 nm with a decrease in PL intensity with increasing temperature. In addition, the ratio of both bromine and iodine in MAPb(BrxI1−x)3 affects the range of phase transition temperatures, where at x = 0.00, 0.25, and 0.50 the first transition occurs below room temperature (orthorhombic to tetragonal) phase and the other occurs above room temperature (tetragonal to cubic) phase. Furthermore, increasing the proportion of bromine causes all the transitions to occur below room temperature. The presented findings suggest a suitable halide component under a temperature-controlled phase transformation to benefit these materials in photonics devices.
Perovskite-type lead halides exhibit promising performances in optoelectronic applications, for which lasers are one of the most promising applications. Although the bulk structure has some advantages, perovskite has additional advantages at the nanoscale owing to its high crystallinity given by a lower trap density. Although the nanoscale can produce efficient light emission, its comparatively poor chemical and colloidal stability limits further development of devices based on this material. Nevertheless, bulk perovskites are promising as optical amplifiers. There has been some developmental progress in the study of optical response and amplified spontaneous emission (ASE) as a benchmark for perovskite bulk phase laser applications. Therefore, to achieve high photoluminescence quantum yields (PLQYs) and large optical gains, material development is essential. One of the aspects in which these goals can be achieved is the incorporation of a bulk structure of high-quality crystallization films based on inorganic perovskite, such as cesium lead halide (CsPb(Br/Cl)3), in polymethyl methacrylate (PMMA) polymer and encapsulation with the optimal thickness of the polymer to achieve complete surface coverage, prevent degradation, surface states, and surface defects, and suppress emission at depth. Sequential evaporation of the perovskite precursors using a single-source thermal evaporation technique (TET) effectively deposited two layers. The PL and ASEs of the bare and modified films with a thickness of 400 nm PMMA were demonstrated. The encapsulation layer maintained the quantum yield of the perovskite layer in the air for more than two years while providing added optical gain compared to the bare film. Under a picosecond pulse laser, the PL wavelength of single excitons and ASE wavelength associated with the stimulated decay of bi-excitons were achieved. The two ASE bands were highly correlated and competed with each other; they were classified as exciton and bi-exciton recombination, respectively. According to the ASE results, bi-exciton emission could be observed in an ultrastable CsPb(Br/Cl)3 film modified by PMMA with a very low excitation energy density of 110 µJ/cm2. Compared with the bare film, the ASE threshold was lowered by approximately 5%. A bi-exciton has a binding energy (26.78 meV) smaller than the binding energy of the exciton (70.20 meV).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.