Glufosinate is a key herbicide to manage glyphosate-resistant weeds mainly because it is a broad-spectrum herbicide, and transgenic glufosinate-resistant crops are available. Although glufosinate use has increased exponentially over the past decade, the treated area with this herbicide is far less than that with glyphosate. This is because glufosinate often provides inconsistent performance in the field, which is attributed to several factors including environmental conditions, application technology, and weed species. Glufosinate is also highly hydrophilic and does not translocate well in plants, generally providing poor control of grasses and perennial species. In the soil, glufosinate is rapidly degraded by microorganisms, leaving no residual activity. While there have been concerns regarding glufosinate toxicology, its proper use can be considered safe. Glufosinate is a fast-acting herbicide that was first discovered as a natural product, and is the only herbicide presently targeting glutamine synthetase. The mode of action of glufosinate has been controversial, and the causes for the rapid phytotoxicity have often been attributed to ammonia accumulation. Recent studies indicate that the contact activity of glufosinate results from the accumulation of reactive oxygen species and subsequent lipid peroxidation. Glufosinate disrupts both photorespiration and the light reactions of photosynthesis, leading to photoreduction of molecular oxygen, which generates reactive oxygen species. The new understanding of the mode of action provided new ideas to improve the herbicidal activity of glufosinate. Finally, a very few weed species have evolved glufosinate resistance in the field, and the resistance mechanisms are generally not well understood requiring further investigation.
The rapid spread of glyphosate-resistant sourgrass populations generates concern in the agricultural production sector in Brazil. Nonetheless, there is not much information related to the frequency and dispersion of sourgrass throughout recent years. We investigated the frequency and dispersion of glyphosate-resistant sourgrass populations in Brazilian agricultural regions as part of a larger-scale weed resistance monitoring study. A discriminatory rate of 960 g ae ha−1of glyphosate was used on plants at the 2- to 3-tiller stage, originating from 2,593 populations of sourgrass sampled in 329 counties in 14 Brazilian states between 2012 and 2015. The dispersion of sourgrass populations originated in western Paraná State, next to the Paraguay border, where the first resistance case was reported. Its dispersion to the central region of Brazil, mainly in soybean-producing areas, is most likely a consequence of agricultural equipment movement and wind-mediated dispersal. Glyphosate-resistant sourgrass populations were found in every geographical region across all Brazilian states tested. These data highlight the importance of an appropriate weed resistance monitoring program to track the evolution and dispersion of resistance to mitigate these issues by focusing efforts regionally and raising awareness among stakeholders in each region.
Herbicides play an important role in preventing crop yield losses due to both their weed interference ability and their capacity for increasing soil conservation in no-till systems. Group A herbicides or acetyl-CoA carboxylase (ACCase) are essential tools the selective management of glyphosate resistance in grass weed species. In this review, we describe important aspects of ACCase biology and herbicides targeting this enzyme, along with a discussion on stewardship programs to delay the evolution of herbicide resistance which can evolve either through target site and/or non-target site mechanisms. Sixteen-point mutations have been reported to confer resistance to ACCase inhibitors. Each mutation confers cross resistance to a different group of herbicides. Metabolic resistance can result in resistance to multiple herbicides with different mechanisms of action (MoA), and herbicide detoxification is often conferred by cytochrome P450 monooxigenases and glutathione-Stransferases. Regardless of whether resistance mechanisms are target or non-target site, using herbicides with the same MoA will result in resistance evolution. Therefore, while field surveys and resistance mechanism studies are crucial for designing reactive management strategies, integrated weed management plays a central role in both reactive and proactive mitigation of herbicide resistance evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.