A new low bandgap polymer POD2T‐DTBT has been synthesized and found to give excellent performances in organic thin‐film transistor (OTFT) and organic photovoltaic (OPV) applications. OTFTs based on POD2T‐DTBT have achieved good hole carrier mobilities of 0.2 cm2V−1s−1 and OPVs based on blends of POD2T‐DTBT and PC71BM have demonstrated promising power conversion efficiencies of 6.26%.
A scalable and accessible photoactive formulation with a low synthetic complexity (SC) index is utilized in organic photovoltaic (OPV) fabrication. The formulation readily dissolves in nonchlorinated solvents, and the corresponding photoactive films can be processed by various coating methods to fabricate devices with power conversion efficiencies (PCEs) of 16.1% and 15.2% when using vacuum‐based molybdenum oxide and solution‐processable conducting polymer as the hole transporting layer in the inverted structure, respectively. This prepared device shows superior stability under light exposure. The PCE is maintained 94% of the initial values after 1080 h of light soaking at 100 mW cm−2. Furthermore, the figure of merit based on the ratio of the SC index and PCE indicates the benefit of this formulation for OPV manufacturing, showing the feasibility of commercialization. Eventually, a PCE of 10.3% is demonstrated for a mini‐module fabricated under ambient conditions, with an active area of 32.6 cm2. To our knowledge, this PCE is one of the largest values reported to date for a green solvent and an all‐solution‐processed OPV module with an inverted architecture.
Please note that technical editing may introduce minor changes to the text and/or graphics contained in the manuscript submitted by the author(s) which may alter content, and that the standard Terms & Conditions and the ethical guidelines that apply to the journal are still applicable. In no event shall the RSC be held responsible for any errors or omissions in these Accepted Manuscript manuscripts or any consequences arising from the use of any information contained in them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.