Background The ChAdOx1 nCoV-19 (AZD1222) vaccine has been approved for emergency use by the UK regulatory authority, Medicines and Healthcare products Regulatory Agency, with a regimen of two standard doses given with an interval of 4–12 weeks. The planned roll-out in the UK will involve vaccinating people in high-risk categories with their first dose immediately, and delivering the second dose 12 weeks later. Here, we provide both a further prespecified pooled analysis of trials of ChAdOx1 nCoV-19 and exploratory analyses of the impact on immunogenicity and efficacy of extending the interval between priming and booster doses. In addition, we show the immunogenicity and protection afforded by the first dose, before a booster dose has been offered. Methods We present data from three single-blind randomised controlled trials—one phase 1/2 study in the UK (COV001), one phase 2/3 study in the UK (COV002), and a phase 3 study in Brazil (COV003)—and one double-blind phase 1/2 study in South Africa (COV005). As previously described, individuals 18 years and older were randomly assigned 1:1 to receive two standard doses of ChAdOx1 nCoV-19 (5 × 10 10 viral particles) or a control vaccine or saline placebo. In the UK trial, a subset of participants received a lower dose (2·2 × 10 10 viral particles) of the ChAdOx1 nCoV-19 for the first dose. The primary outcome was virologically confirmed symptomatic COVID-19 disease, defined as a nucleic acid amplification test (NAAT)-positive swab combined with at least one qualifying symptom (fever ≥37·8°C, cough, shortness of breath, or anosmia or ageusia) more than 14 days after the second dose. Secondary efficacy analyses included cases occuring at least 22 days after the first dose. Antibody responses measured by immunoassay and by pseudovirus neutralisation were exploratory outcomes. All cases of COVID-19 with a NAAT-positive swab were adjudicated for inclusion in the analysis by a masked independent endpoint review committee. The primary analysis included all participants who were SARS-CoV-2 N protein seronegative at baseline, had had at least 14 days of follow-up after the second dose, and had no evidence of previous SARS-CoV-2 infection from NAAT swabs. Safety was assessed in all participants who received at least one dose. The four trials are registered at ISRCTN89951424 (COV003) and ClinicalTrials.gov , NCT04324606 (COV001), NCT04400838 (COV002), and NCT04444674 (COV005). Findings Between April 23 and Dec 6, 2020, 24 422 participants were recruited and vaccinated across the four studies, of whom 17 178 were included in the primary analysis (8597 receiving ChAdOx1 nCoV-19 and 8581 receiving control vaccine). The data cutoff for these analyses was Dec 7, 2020. 332 NAAT-positive infections met the primary endpoint of symptomatic infection more t...
Phagocytes destroy ingested microbes by producing hypochlorous acid (HOCl) from chloride ions (Cl−) and hydrogen peroxide within phagolysosomes, using the enzyme myeloperoxidase. HOCl, the active ingredient in bleach, has antibacterial/antiviral properties. As myeloperoxidase is needed for HOCl production, non-myeloid cells are considered incapable of producing HOCl. Here, we show that epithelial, fibroblast and hepatic cells have enhanced antiviral activity in the presence of increasing concentrations of sodium chloride (NaCl). Replication of enveloped/non-enveloped, DNA (herpes simplex virus-1, murine gammaherpesvirus 68) and RNA (respiratory syncytial virus, influenza A virus, human coronavirus 229E, coxsackievirus B3) viruses are inhibited in a dose-dependent manner. Whilst treatment with sodium channel inhibitors did not prevent NaCl-mediated virus inhibition, a chloride channel inhibitor reversed inhibition by NaCl, suggesting intracellular chloride is required for antiviral activity. Inhibition is also reversed in the presence of 4-aminobenzoic hydrazide, a myeloperoxidase inhibitor, suggesting epithelial cells have a peroxidase to convert Cl− to HOCl. A significant increase in intracellular HOCl production is seen early in infection. These data suggest that non-myeloid cells possess an innate antiviral mechanism dependent on the availability of Cl− to produce HOCl. Antiviral activity against a broad range of viral infections can be augmented by increasing availability of NaCl.
Background Cancer and anti-cancer treatment (ACT) may be risk factors for severe SARS-CoV-2 infection and limited vaccine efficacy. Long–term longitudinal studies are needed to evaluate these risks. The Scottish COVID cancer immunity prevalence (SCCAMP) study characterizes the incidence and outcomes of SARS-CoV-2 infection and vaccination in patients with solid tumors undergoing ACT. This preliminary analysis includes 766 patients recruited since May 2020. Methods Patients with solid-organ cancers attending secondary care for active ACT consented to the collection of routine electronic health record data and serial blood samples over 12 months. Blood samples were tested for total SARS-CoV-2 antibody. Results A total of 766 participants were recruited between May 28, 2020 and October 31, 2021. Most received cytotoxic chemotherapy (79%). Among the participants, 48 (6.3%) were tested positive for SARS-CoV-2 by PCR. Infection rates were unaffected by ACT, largely aligning with the local population. Mortality proportion was not higher with a recent positive SARS-CoV-2 PCR (10.4% vs 10.6%). Multivariate analysis revealed lower infection rates in vaccinated patients regardless of chemotherapy (HR 0.307 [95% CI, 0.144-0.6548]) or immunotherapy (HR 0.314 [95% CI, 0.041-2.367]) treatment. A total of 96.3% of patients successfully raised SARS-CoV-2 antibodies after >2 vaccines. This was independent of the treatment type. Conclusion This is the largest on-going longitudinal real-world dataset of patients undergoing ACT during the early stages of the COVID-19 pandemic. This preliminary analysis demonstrates that patients with solid tumors undergoing ACT have high protection from SARS-CoV-2 infection following COVID-19 vaccination. The SCCAMP study will evaluate long–term COVID-19 antibody trends, focusing on specific ACTs and patient subgroups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.