The genetic diversity and population structure of Escherichia coli isolates from small-scale dairy farms were used to assess the ability of E. coli to spread within the farm environment and between neighboring farms. A total of 164 E. coli isolates were obtained from bovine feces, bedding, cow teats and milk from 6 small-scale dairy farms. Ward's clustering grouped the isolates into 54 different random amplified polymorphic DNA (RAPD) types at 95% similarity, regardless of either the sample type or the farm of isolation. This suggests that RAPD types are shared between bovine feces, bedding, cow teats, and milk. In addition, transmission of RAPD types between the studied farms was suggested by the Ward grouping pattern of the isolates, Nei's and AMOVA population analyses, and genetic landscape shape analysis. For the first time, the latter analytical tool was used to assess the ability of E. coli to disseminate between small-scale dairy farms within the same producing region. Although a number of dispersal mechanisms could exist between farms, the genetic landscape shape analysis associated the flow of E. coli RAPD types with the movement of forage and milking staff between farms. This study will aid in planning disease prevention strategies and optimizing husbandry practices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.