En este estudio se trató el problema de determinar la ubicación de fallas en 1D, utilizando el método de elementos finitos no conformes para dar solución al problemas de aproximación de discontinuidades. Este es un problema que se presenta en las áreas de geología, imágenes de satélites, reconocimiento de patrones, modelos estructurales de yacimiento de pe- tróleo, entre otros. Para la realización del presente trabajo de investigación, se definieron los espacios de aproximación de funciones basadas en elementos finitos no conformes utilizando polinomios de grado uno y dos, en una dimensión. Luego, conocido un conjunto finitos de puntos asociados a una función que puede presentar la discontinuidad, se realizó un proceso de ajuste de tipo mínimos cuadrados, con la finalidad de detectar los puntos posibles de discontinuidades. Fi- nalmente, haciendo un análisis del error sobre los datos considerados como información sobre la función y haciendo uso del fenómeno de Gibbs, se localizaron los puntos candidatos para ser aproximaciones de los puntos de discontinuidad de la función en estudio. Aquí, se presenta el proceso numérico para la obtención de los puntos de discontinuidad y se muestra la eficiencia del mismo mediante ejemplos numéricos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.