We recorded the neuronal activity in the arm area of the motor cortex and parietal area 7a of two monkeys during interception of stimuli moving in real and apparent motion. The stimulus moved along a circular path with one of five speeds (180-540 degrees/s), and was intercepted at 6 o'clock by exerting a force pulse on a semi-isometric joystick which controlled a cursor on the screen. The real stimuli were shown in adjacent positions every 16 ms, whereas in the apparent motion situation five stimuli were flashed successively at the vertices of a regular pentagon. The results showed, first, that a group of neurons in both areas above responded not only during the interception but also during a NOGO task in which the same stimuli were presented in the absence of a motor response. This finding suggests these areas are involved in both the processing of the stimulus as well as in the preparation and production of the interception movement. In addition, a group of motor cortical cells responded during the interception task but not during a center --> out task, in which the monkeys produced similar force pulses towards eight stationary targets. This group of cells may be engaged in sensorimotor transformations more specific to the interception of real and apparent moving stimuli. Finally, a multiple regression analysis revealed that the time-varying neuronal activity in area 7a and motor cortex was related to various aspects of stimulus motion and hand force in both the real and apparent motion conditions, with stimulus-related activity prevailing in area 7a and hand-related activity prevailing in motor cortex. In addition, the neural activity was selectively associated with the stimulus angle during real motion, whereas it was tightly correlated to the time-to-contact in the apparent motion condition, particularly in the motor cortex. Overall, these observations indicate that neurons in motor cortex and area 7a are processing different parameters of the stimulus depending on the kind of stimulus motion, and that this information is used in a predictive fashion in motor cortex to trigger the interception movement.
Moving visual stimuli were presented to behaving monkeys who fixated their eyes and did not move their arm. The stimuli consisted of random dots moving coherently in eight different kinds of motion (right, left, up, downward, expansion, contraction, clockwise, and counterclockwise) and were presented in 25 square patches on a liquid crystal display projection screen. Neuronal activity in the arm area of the motor cortex and area 7a was significantly influenced by the visual stimulation, as assessed using an ANOVA. The percentage of cells with a statistically significant effect of visual stimulation was 3 times greater in area 7a (370/587, 63%) than in motor cortex (148/693, 21.4%). With respect to stimulus properties, its location and kind of motion had differential effects on cell activity in the two areas. Specifically, the percentage of cells with a significant stimulus location effect was approximately 2.5 times higher in area 7a (311/370, 84%) than in motor cortex (48/148, 32.4%), whereas the percentage of cells with a significant stimulus motion effect was approximately 2 times higher in the motor cortex (79/148, 53.4%) than in area 7a (102/370, 27.6%). We also assessed the selectivity of responses to particular stimulus motions using a Poisson train analysis and determined the percentage of cells that showed activation in only one stimulus condition. This percentage was 2 times higher in the motor cortex (73.7%) than in area 7a (37.7%). Of all kinds of stimulus motion tested, responses to expanding optic flow were the strongest in both cortical areas. Finally, we compared the activation of motor cortical cells during visual stimulation to that observed during force exertion in a center --> out task. Of 514 cells analyzed for both the motor and visual tasks, 388 (75.5%) showed a significant relation to either or both tasks, as follows: 284/388 (73.2%) cells showed a significant relation only to the motor task, 27/388 (7%) cells showed a significant relation only to the visual task, whereas the remaining 77/388 (19.8%) cells showed significant relations to both tasks. Therefore a total of 361/514 (70.2%) cells were related to the motor task and 104/514 (20.2%) were related to the visual task. Finally, with respect to receptive fields (RFs), there was no clear visual receptive field structure in the motor cortical neuronal responses, in contrast to area 7a where RFs were present and could be modulated by the type of optic flow stimulus.
We used psychometric techniques and neurophysiological recordings to study the role of the putamen in somesthetic perception. Four monkeys were trained to categorize the speed of moving tactile stimuli. Animals performed a task in which one of two target switches had to be pressed with the right hand to indicate whether the speed of probe movement across the glabrous skin of the left, restrained hand was low or high. During the task we recorded the activity of neurons in the putamen contralateral (right) and ipsilateral (left) to the stimulated hand. We found different types of neuronal responses, all present in the right and left putamen. Some neurons responded during the stimulus period, others responded during the hand-arm movement used to indicate categorization, and others responded during both of these periods. The responses of many neurons did not vary either with the speed of the stimuli or in relation to the categorization process. In contrast, neurons of a particular type responded differentially: their activity reflected whether stimulus speed was low or high. These differential responses occurred during the stimulus and hand-arm motion periods. A number of the nondifferential and differential neurons were studied when the same stimuli used in the categorization task were delivered passively. Few neurons with nondifferential discharges, and none of the differential neurons, responded in this condition. In a visually cued control task we studied the possibility that the differential responses were associated with the intention to press or with the trajectory of the hand to one of the target switches. In this condition, a light turned on instructed the animal which target switch to press for a reward. Very few neurons in both hemispheres maintained the differential responses observed during the categorization task. Those neurons that discharged selectively for low or high speeds were analyzed quantitatively to produce a measure comparable with the psychometric function. The thresholds of the resulting neurometric curves for the neuronal populations were very similar to the psychometric thresholds. The activity of a large fraction of these neurons could be used to accurately predict whether the stimulus speed was low or high. The results indicate that the putamen, both contralateral and ipsilateral to the stimulated hand, contains neurons that discharge in response to the somesthetic stimuli during the categorization task. Those neurons that respond irrespective of the stimulus speed appear to be involved in the general sensorimotor behavior of the animal during the execution of the task. The results suggest that the putamen may play a role in bimanual tasks. The recording of neurons in the right and left putamen whose activities correlate with the speed categories suggests that this region of the basal ganglia, in addition to its role in motor functions, is also involved in the animal's decision process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.