Recent studies have reported that induced pluripotent stem (iPS) cells from mice and humans can differentiate into primordial germ cells. However, whether iPS cells are capable of producing male germ cells is not known. The objective of this study was to investigate the differentiation potential of mouse iPS cells into spermatogonial stem cells and late-stage male germ cells. We used an approach that combines in vitro differentiation and in vivo transplantation. Embryoid bodies (EBs) were obtained from iPS cells using leukaemia inhibitor factor (LIF)-free medium. Quantitative PCR revealed a decrease in Oct4 expression and an increase in Stra8 and Vasa mRNA in the EBs derived from iPS cells. iPS cell-derived EBs were induced by retinoic acid to differentiate into spermatogonial stem cells (SSCs), as evidenced by their expression of VASA, as well as CDH1 and GFRα1, which are markers of SSCs. Furthermore, these germ cells derived from iPS cells were transplanted into recipient testes of mice that had been pre-treated with busulfan. Notably, iPS cell-derived SSCs were able to differentiate into male germ cells ranging from spermatogonia to round spermatids, as shown by VASA and SCP3 expression. This study demonstrates that iPS cells have the potential to differentiate into late-stage male germ cells. The derivation of male germ cells from iPS cells has potential applications in the treatment of male infertility and provides a model for uncovering the molecular mechanisms underlying male germ cell development.
SummaryChemo-/radiotherapy resistance is the main cause accounting for most treatment failure in colorectal cancer (CRC). Tumor-initiating cells (TICs) are the culprit leading to CRC chemo-/radiotherapy resistance. The underlying regulation mechanism of TICs in CRC remains unclear. Here we discovered that miR-15b expression positively correlated with therapeutic outcome in CRC. Expression of miR-15b in pretreatment biopsy tissue samples predicted tumor regression grade (TRG) in rectal cancer patients after receiving neoadjuvant radiotherapy (nRT). Expression of miR-15b in post-nRT tissue samples was associated with therapeutic outcome. DCLK1 was identified as the direct target gene for miR-15b and its suppression was associated with self-renewal and tumorigenic properties of DCLK1+ TICs. We identified B lymphoma Mo-MLV insertion region l homolog (BMI1) as a downstream target regulated by miR-15b/DCLK1 signaling. Thus, miR-15b may serve as a valuable marker for prognosis and therapeutic outcome prediction. DCLK1 could be a potential therapeutic target to overcome chemo-/radioresistance in CRC.
We previously found that HPV16 E6 causes the degradation of the tumor suppressor protein TSC2, resulting in the phosphorylation of S6 kinase and S6 even in the absence of insulin. In the present study, we investigated the role of E6‐associated protein (E6AP) in HPV16 E6‐induced TSC2 degradation. Our results demonstrated that TSC2 was targeted for degradation in the presence or absence of HPV16 E6. Over‐expression of E6AP enhanced the degradation of TSC2 by HPV16 E6, while expression of a dominant negative E6AP (C833A) inhibited the E6‐induced degradation. Additionally, by using shRNAs to block E6AP expression in HPV16 positive and negative cells, we found a significantly prolonged TSC2 half‐life. An in vivo ubiquitination assay was done to reveal that E6AP promoted the ubiquitination of TSC2 independent of HPV16 E6. We further found that TSC2 bound E6AP in the presence as well as in the absence of HPV16 E6. The binding regions on E6AP and TSC2 have been identified as amino acid (aa) 260–316, aa 428–500 and aa 1–175, aa 1251–1807, respectively. Taken together, degradation of TSC2 is mediated by E6AP ubiquitin ligase.
Background: Colorectal cancer (CRC) is one of the most prevalent gastrointestinal malignancies. The incidence of CRC has been rapidly increasing in China. Transferrin receptor 1 (TfR1) is a key regulator of cellular iron homeostasis. Several studies have demonstrated TfR1 overexpression in a variety of human tumors, but the association between TfR1 and CRC remains unclear. Methods: TfR1 expression was evaluated in six CRC cell lines and tumor tissues. A total of 201 CRC patients were included for immunohistochemistry and 19 pairs of frozen tissues were used for real-time PCR. Cell proliferation, cell cycle, cell migration and invasion, and in vivo carcinogenesis were tested after downregulation of TfR1 by lentivirus. Protein microarray and Western blot analyses were used to explore the underlying mechanisms of TfR1 in CRC. Results: TfR1 expression was higher in CRC tissues than in normal tissues (57.2% vs 22.9%, P <0.001). TfR1 expression was obviously higher in CRC tissues with well differentiation ( P =0.008), no lymph node metastasis ( P =0.002), no distant metastasis ( P =0.006), no vascular invasion ( P <0.001) and early TNM stage ( P =0.013). CRC patients with TfR1-positive expression had a better survival than those with TfR1-negative expression ( P =0.044). Downregulation of TfR1 expression inhibited cell proliferation, promoted cells from G1 phase to S phase and facilitated cell migration and invasion. Knockdown of TfR1 also suppressed tumor growth in BALB/C-nu mice. Protein microarray and Western blot analyses showed that the Janus protein tyrosine kinase/signal transducer and activator of transcription pathway was activated along with downregulation of TfR1 expression. Conclusion: Though TfR1 was overexpressed in colorectal cancer tissues, there was evidence that downregulation of TfR1 could promote cancer progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.