Introduction:The main chemical components of Angelica dahurica (Hoffm.) Benth. & Hook.f. ex Franch. & Sav. are coumarins and volatile oils, and coumarins are regarded as the representative constituents with various pharmacological effects.Objective: Based on matrix-assisted laser desorption/ionization time of flight mass spectrometry imaging (MALDI-TOF-MSI), a method for spatial distribution analysis of coumarins in primary root and lateral root of A. dahurica was established. Also, spatial visualization of coumarins in the roots of A. dahurica was realized. Materials and Methods: α-Cyano-4-hydroxycinnamic acid (CHCA), 2,5-dihydroxybenzoic acid, and 9-aminoacridine were used as matrices. MALDI-TOF-MSI was employed to analyze the standards of imperatorin, oxypeucedanin, and osthole. Based on the higher sensitivity and repeatability of MALDI-TOF-MSI, the CHCA matrix was selected. The matrix was used for MALDI-TOF-MSI in positive mode to analyze the distribution of coumarins in primary root and lateral root of A. dahurica.Results: In total, 37 coumarins were detected in primary root and 36 coumarins were detected in lateral root by MALDI-TOF-MSI. The results showed that the coumarin content in primary root was higher than that in lateral root. Coumarins in primary root of A. dahurica were concentrated in the periderm, cortex, and phloem, whereas coumarins in lateral roots were concentrated in the phloem.
Conclusion:The coumarins in primary root and lateral root of A. dahurica were directly analyzed without extraction and isolation, and the spatial distribution of coumarins was comprehensively visualized for the first time by MALDI-TOF-MSI, which provided a basis for distinguishing primary root and lateral root.
Objective: To clarify the accumulation and mutual transformation patterns of the chemical components in Angelica dahurica (A. dahurica) and predict the quality markers (Q-Markers) of its antioxidant activity. Method: The types of and content changes in the chemical components in various parts of A. dahurica during different periods were analyzed by using gas chromatography-mass spectrometry technology (GC-MS). The antioxidant effect of the Q-Markers was predicted using network pharmacological networks, and molecular docking was used to verify the biological activity of the Q-Markers. Result: The differences in the content changes in the coumarin compounds in different parts were found by using GC-MS technology, with the relative content being the best in the root, followed by the leaves, and the least in the stems. The common components were used as potential Q-Markers for a network pharmacology analysis. The component-target-pathway-disease network was constructed. In the molecular docking, the Q-Markers had a good binding ability with the core target, reflecting better biological activity. Conclusions: The accumulation and mutual transformation patterns of the chemical components in different parts of A. dahurica were clarified. The predicted Q-Markers lay a material foundation for the establishment of quality standards and a quality evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.