Platelet separation and purification are required in many applications including in the detection and treatment of hemorrhagic and thrombotic diseases, in addition to transfusions and in medical research. In this study, platelet separation was evaluated using a novel zigzag microchannel fluidic device while leveraging a dielectrophoresis (DEP) electric field using the COMSOL multiphysics software package and additional experimentation. The zigzag-shaped microchannel was superior to straight channel devices for cell separation because the sharp corners reduced the required horizontal distance needed for separation and also contributed to an asymmetric DEP electric field. A perfect linear relationship was observed between the separation distance and the corner angles. A quadratic relationship (R2 = 0.99) was observed between the driving voltage and the width and the lengths of the channel, allowing for optimization of these properties. In addition, the voltage was inversely proportional to the channel width and proportional to the channel length. An optimal velocity ratio of 1:4 was identified for the velocities of the two device inlets. The proposed device was fabricated using laser engraving and lithography with optimized structures including a 0.5 mm channel width, a 120° corner angle, a 0.3 mm channel depth, and a 17 mm channel length. A separation efficiency of 99.4% was achieved using a voltage of 20 V and a velocity ratio of 1:4. The easy fabrication, lower required voltage, label-free detection, high efficiency, and environmental friendliness of this device make it suitable for point-of-care medicine and biological applications. Moreover, it can be used for the separation of other types of compounds including lipids.
We report ab initio calculations of the transport behavior of a phenyl substituted molecular motor. The calculated results show that the transport behavior of the device is sensitive to the rotation degree of the rotor part. When the rotor part is parallel with the stator part, a better rectifying performance can be found in the current-voltage curve. However, when the rotor part revolves to vertical with the stator part, the currents in the positive bias region decrease slightly. More importantly, the rectifying performance disappears. Thus this offers us a new method to modulate the rectifying behavior in molecular devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.