CRISPR/Cas9-mediated genome editing holds clinical potential for treating genetic diseases, such as Duchenne muscular dystrophy (DMD), which is caused by mutations in the dystrophin gene. To correct DMD by skipping mutant dystrophin exons in postnatal muscle tissue in vivo, we used adeno-associated virus–9 (AAV9) to deliver gene-editing components to postnatal mdx mice, a model of DMD. Different modes of AAV9 delivery were systematically tested, including intraperitoneal at postnatal day 1 (P1), intramuscular at P12, and retro-orbital at P18. Each of these methods restored dystrophin protein expression in cardiac and skeletal muscle to varying degrees, and expression increased from 3 to 12 weeks after injection. Postnatal gene editing also enhanced skeletal muscle function, as measured by grip strength tests 4 weeks after injection. This method provides a potential means of correcting mutations responsible for DMD and other monogenic disorders after birth.
Mutations in the gene encoding dystrophin, a protein that maintains muscle integrity and function, cause Duchenne muscular dystrophy (DMD). The deltaE50-MD dog model of DMD harbors a mutation corresponding to a mutational “hotspot” in the human DMD gene. We used adeno-associated viruses to deliver CRISPR gene editing components to four dogs and examined dystrophin protein expression 6 weeks after intramuscular delivery (n = 2) or 8 weeks after systemic delivery (n = 2). After systemic delivery in skeletal muscle, dystrophin was restored to levels ranging from 3 to 90% of normal, depending on muscle type. In cardiac muscle, dystrophin levels in the dog receiving the highest dose reached 92% of normal. The treated dogs also showed improved muscle histology. These large-animal data support the concept that, with further development, gene editing approaches may prove clinically useful for the treatment of DMD.
Skeletal muscle formation occurs through fusion of myoblasts to form multinucleated myofibers. From a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) loss-of-function screen for genes required for myoblast fusion and myogenesis, we discovered an 84–amino acid muscle-specific peptide that we call Myomixer. Myomixer expression coincides with myoblast differentiation and is essential for fusion and skeletal muscle formation during embryogenesis. Myomixer localizes to the plasma membrane, where it promotes myoblast fusion and associates with Myomaker, a fusogenic membrane protein. Myomixer together with Myomaker can also induce fibroblast-fibroblast fusion and fibroblast-myoblast fusion. We conclude that the Myomixer-Myomaker pair controls the critical step in myofiber formation during muscle development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.