Skeletal muscle formation occurs through fusion of myoblasts to form multinucleated myofibers. From a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) loss-of-function screen for genes required for myoblast fusion and myogenesis, we discovered an 84–amino acid muscle-specific peptide that we call Myomixer. Myomixer expression coincides with myoblast differentiation and is essential for fusion and skeletal muscle formation during embryogenesis. Myomixer localizes to the plasma membrane, where it promotes myoblast fusion and associates with Myomaker, a fusogenic membrane protein. Myomixer together with Myomaker can also induce fibroblast-fibroblast fusion and fibroblast-myoblast fusion. We conclude that the Myomixer-Myomaker pair controls the critical step in myofiber formation during muscle development.
Myostatin (Mstn) is predominantly expressed in skeletal muscles and plays important roles in regulating muscle growth and development, as well as fat deposition. Mstn-knockout (Mstn(-/-)) mice exhibit increased muscle mass due to both hypertrophy and hyperplasia, and leaner body composition due to reduced fat mass. Here, we show that white adipose tissue (WAT) of Mstn(-/-) develops characteristics of brown adipose tissue (BAT) with dramatically increased expression of BAT signature genes, including Ucp1 and Pgc1α, and beige adipocyte markers Tmem26 and CD137. Strikingly, the observed browning phenotype is non-cell autonomous and is instead driven by the newly defined myokine irisin (Fndc5) secreted from Mstn(-/-) skeletal muscle. Within the muscle, Mstn(-/-) leads to increased expression of AMPK and its phosphorylation, which subsequently activates PGC1α and Fndc5. Together, our study defines a paradigm of muscle-fat crosstalk mediated by Fndc5, which is up-regulated and secreted from muscle to induce beige cell markers and the browning of WAT in Mstn(-/-) mice. These results suggest that targeting muscle Mstn and its downstream signaling represents a therapeutic approach to treat obesity and type 2 diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.