<abstract><p>Indices recommendation is a long-standing topic in stock market investment. Predicting the future trends of indices and ranking them based on the prediction results is the main scheme for indices recommendation. How to improve the forecasting performance is the central issue of this study. Inspired by the widely used trend-following investing strategy in financial investment, the indices' future trends are related to not only the nearby transaction data but also the long-term historical data. This article proposes the MSGraph, which tries to improve the index ranking performance by modeling the correlations of short and long-term historical embeddings with the graph attention network. The original minute-level transaction data is first synthesized into a series of K-line sequences with varying time scales. Each K-line sequence is input into a long short-term memory network (LSTM) to get the sequence embedding. Then, the embeddings for all indices with the same scale are fed into a graph convolutional network to achieve index aggregation. All the aggregated embeddings for the same index are input into a graph attention network to fuse the scale interactions. Finally, a fully connected network produces the index return ratio for the next day, and the recommended indices are obtained through ranking. In total, 60 indices in the Chinese stock market are selected as experimental data. The mean reciprocal rank, precision, accuracy and investment return ratio are used as evaluation metrics. The comparison results show that our method achieves state-of-the-art results in all evaluation metrics, and the ablation study also demonstrates that the combination of multiple scale K-lines facilitates the indices recommendation.</p></abstract>
For autistic children with slow language function, it is a classic and easy way to understand the development of their cognitive ability through simple painting experiments. Due to the lack of professional evaluators for painting assessment of autistic children, this article research and implement an intelligent assessment system for child autism through recognition of portrait sketch components. A portrait sketch database is constructed with the sample size of 30,400 after data expansion. The data consists of two formats: stroke vector sequence and 2D image. Then we propose a joint model coupled with LSTM and CNN features to automatically segment the portrait sketch components. It can perform better segmentation for exaggerated proportion and incomplete components samples. Finally, according to the evaluation criteria of the painting, we design an assessment model for child autism. The experiments are conducted in cooperation with relevant rehabilitation institutions to verify the effectiveness of the system. The analysis results show that our painting assessment system has a good ability to identify autistic tendencies. It can accurately evaluate children's autistic tendencies through "draw-a-man" experiments.
Owing to the heterogeneity and incomplete information present in various domain knowledge graphs, the alignment of distinct source entities that represent an identical real-world entity becomes imperative. Existing methods focus on cross-lingual knowledge graph alignment, and assume that the entities of knowledge graphs in the same language are unique. However, due to the ambiguity of language, heterogeneous knowledge graphs in the same language are often duplicated, and relationship triples are far less than those of cross-lingual knowledge graphs. Moreover, existing methods rarely exclude noisy entities in the process of alignment. These make it impossible for existing methods to deal effectively with the entity alignment of domain knowledge graphs. In order to address these issues, we propose a novel entity alignment approach based on domain-oriented embedded representation (DomainEA). Firstly, a filtering mechanism employs the language model to extract the semantic features of entities and to exclude noisy entities for each entity. Secondly, a Structural Aggregator (SA) incorporates multiple hidden layers to generate high-order neighborhood-aware embeddings of entities that have few relationship connections. An Attribute Aggregator (AA) introduces self-attention to dynamically calculate weights that represent the importance of the attribute values of the entities. Finally, the approach calculates a transformation matrix to map the embeddings of distinct domain knowledge graphs onto a unified space, and matches entities via the joint embeddings of the SA and AA. Compared to six state-of-the-art methods, our experimental results on multiple food datasets show the following: (i) Our approach achieves an average improvement of 6.9% on MRR. (ii) The size of the dataset has a subtle influence on our approach; there is a positive correlation between the expansion of the dataset size and an improvement in most of the metrics. (iii) We can achieve a significant improvement in the level of recall by employing a filtering mechanism that is limited to the top-100 nearest entities as the candidate pairs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.