Septins play important roles in regulating development and differentiation. Septin 7 (SEPT7) is a crucial component in orchestrating the septin core complex into highly ordered filamentous structures. Here, we showed that genetic depletion of SEPT7 or treatment with forchlorfenuron (FCF; a compound known to affect septin filament assembly) led to reduced the S phase entry in cell models and zebrafish embryos. In addition to colocalizing with actin filaments, SEPT7 resided in the centrosome, and SEPT7 depletion led to aberrant mitotic spindle pole formation. This mitotic defect was rescued in SEPT7‐deficient cells by wild‐type SEPT7, suggesting that SEPT7 maintained mitotic spindle poles. In addition, we observed disorganized microtubule nucleation and reduced cell migration with SEPT7 depletion. Furthermore, SEPT7 formed a complex with and maintained the abundance of p150glued, the component of centriole subdistal appendages. Depletion of p150glued resulted in a phenotype reminiscent of SEPT7‐deficient cells, and overexpression of p150glued reversed the defective phenotypes. Thus, SEPT7 is a centrosomal protein that maintains proper cell proliferation and microtubule array formation via maintaining the abundance of p150glued.
p150(glued) is the largest subunit of dynactin protein complex, through which cargo vesicles link to the microtubule minus-end directed motor protein dynein. In addition, p150(glued) also locates in the mother centriole where it organizes the subdistal appendage. The components of appendage are dynamically regulated throughout the cell cycle stages, but it is still unclear whether the centrosomal residency of p150(glued) correlated with cell cycle progression. Here we found that p150(glued) was located in the mother centriole during G1/S stage and its centrosomal residency was independent of microtubule transportation. However, the centrosomal p150(glued) became blurred at G2/M phase and this event was not regulated by its phosphorylation. Entering into mitosis, p150(glued) was robustly enriched in the mitotic spindle nearby the spindle poles but not in the centrosome. During serum starvation (G0 stage), p150(glued) appeared at the base of primary cilium and its depletion attenuated starvation-induced primary cilium formation. We also checked its role in the maintenance of centrosome homeostasis and configuration, and found depletion of p150(glued) did not induce centrosome amplification or splitting but inhibited U2OS cell growth. G1 arrest and reduced EdU incorporation were observed in p150(glued) deficient U2OS cells. In addition, cyclin E was downregulated following p150(glued) depletion. The p53/p21 signaling was activated indicating that CDKs were inactivated. The reduced cell growth was ameliorated in the p150(glued) depleted cells when treated with p53 inhibitor. Thus, we have identified the centrosomal targeting of p150(glued) in distinct cell cycle stage and uncovered its role in controlling G1/S transition.
Chloroquine (CQ) is an antimalaria drug that has been used in clinical practice for several decades. One serious complication of CQ treatment is the macular retinopathy caused by the disruption of the retinal pigmented epithelium, leading to vision loss. Little is known about how CQ affects retinal pigmented epithelium. In this study, we found that cell proliferation was reduced by CQ treatment in time and dose‐dependent manners. No obvious cell death was detected; however, what was observed instead was G0/G1 arrest during which primary cilium started to grow in the presence of CQ. Pharmacological inhibition of primary cilium formation led to a reduction of cell viability suggesting that CQ‐induced primary cilium protected cells from death. In addition to cell growth, with the CQ treatment the retina pigmented epithelium (RPE) cells less flattened with the spindle‐like protrusion. When checking the microtubule networks, the microtubule nucleation activity was disrupted in the presence of CQ. The level of p150
glued, the largest subunit of dynactin, was reduced in CQ‐treated RPE1 cells, and depletion of p150
glued resulted in a phenotype reminiscent of CQ‐treated cells. Thus, CQ treatment reduced the expression of p150
glued, leading to reduced S phase entry and defective microtubule nucleation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.