Nowadays detection of deterioration of electrical motors is an important topic of research. Vibration signals often carry diagnostic information of a motor. The authors proposed a setup for the analysis of vibration signals of three-phase induction motors. In this paper rotor fault diagnostic techniques of a three-phase induction motor (TPIM) were presented. The presented techniques used vibration signals and signal processing methods. The authors analyzed the recognition rate of vibration signal readings for 3 states of the TPIM: healthy TPIM, TPIM with 1 broken bar, and TPIM with 2 broken bars. In this paper the authors described a method of the feature extraction of vibration signals Method of Selection of Amplitudes of Frequencies – MSAF-12. Feature vectors were obtained using FFT, MSAF-12, and mean of vector sum. Three methods of classification were used: Nearest Neighbor (NN), Linear Discriminant Analysis (LDA), and Linear Support Vector Machine (LSVM). The obtained results of analyzed classifiers were in the range of 97.61 % – 100 %.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.