Understanding protein-protein interactions (PPIs) is quite important to elucidate crucial biological processes and even design compounds that interfere with PPIs with pharmaceutical significance. Protein-protein docking can afford the atomic structural details of protein-protein complexes, but the accurate prediction of the three-dimensional structures for protein-protein systems is still notoriously difficult due in part to the lack of an ideal scoring function for protein-protein docking. Compared with most scoring functions used in protein-protein docking, the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) and Molecular Mechanics/Poisson Boltzmann Surface Area (MM/PBSA) methodologies are more theoretically rigorous, but their overall performance for the predictions of binding affinities and binding poses for protein-protein systems has not been systematically evaluated. In this study, we first evaluated the performance of MM/PBSA and MM/GBSA to predict the binding affinities for 46 protein-protein complexes. On the whole, different force fields, solvation models, and interior dielectric constants have obvious impacts on the prediction accuracy of MM/GBSA and MM/PBSA. The MM/GBSA calculations based on the ff02 force field, the GB model developed by Onufriev et al. and a low interior dielectric constant (εin = 1) yield the best correlation between the predicted binding affinities and the experimental data (rp = -0.647), which is better than MM/PBSA (rp = -0.523) and a number of empirical scoring functions used in protein-protein docking (rp = -0.141 to -0.529). Then, we examined the capability of MM/GBSA to identify the possible near-native binding structures from the decoys generated by ZDOCK for 43 protein-protein systems. The results illustrate that the MM/GBSA rescoring has better capability to distinguish the correct binding structures from the decoys than the ZDOCK scoring. Besides, the optimal interior dielectric constant of MM/GBSA for re-ranking docking poses may be determined by analyzing the characteristics of protein-protein binding interfaces. Considering the relatively high prediction accuracy and low computational cost, MM/GBSA may be a good choice for predicting the binding affinities and identifying correct binding structures for protein-protein systems.
Entropy effects play an important role in drug-target interactions, but the entropic contribution to ligand-binding affinity is often neglected by end-point binding free energy calculation methods, such as MM/GBSA and MM/PBSA, due to the expensive computational cost of normal mode analysis (NMA). Here, we systematically investigated entropy effects on the prediction power of MM/GBSA and MM/PBSA using >1500 protein-ligand systems and six representative AMBER force fields. Two computationally efficient methods, including NMA based on truncated structures and the interaction entropy approach, were used to estimate the entropic contributions to ligand-target binding free energies. In terms of the overall accuracy, we found that, for the minimized structures, in most cases the inclusion of the conformational entropies predicted by truncated NMA (enthalpynmode_min_9Å) compromises the overall accuracy of MM/GBSA and MM/PBSA compared with the enthalpies calculated based on the minimized structures (enthalpymin). However, for the MD trajectories, the binding free energies can be improved by the inclusion of the conformation entropies predicted by either truncated-NMA for a relatively high dielectric constant (εin = 4) or the interaction entropy method for εin = 1-4. In terms of reproducing the absolute binding free energies, the binding free energies estimated by including the truncated-NMA entropies based on the MD trajectories (ΔGnmode_md_9Å) give the lowest average absolute deviations against the experimental data among all the tested strategies for both MM/GBSA and MM/PBSA. Although the inclusion of the truncated NMA based on the MD trajectories (ΔGnmode_md_9Å) for a relatively high dielectric constant gave the overall best result and the lowest average absolute deviations against the experimental data (for the ff03 force field), it needs too much computational time. Alternatively, considering that the interaction entropy method does not incur any additional computational cost and can give comparable (at high dielectric constant, εin = 4) or even better (at low dielectric constant, εin = 1-2) results than the truncated-NMA entropy (ΔGnmode_md_9Å), the interaction entropy approach is recommended to estimate the entropic component for MM/GBSA and MM/PBSA based on MD trajectories, especially for a diverse dataset. Furthermore, we compared the predictions of MM/GBSA with six different AMBER force fields. The results show that the ff03 force field (ff03 for proteins and gaff with AM1-BCC charges for ligands) performs the best, but the predictions given by the tested force fields are comparable, implying that the MM/GBSA predictions are not very sensitive to force fields.
Blockade of human ether-à-go-go related gene (hERG) channel by compounds may lead to drug-induced QT prolongation, arrhythmia, and Torsades de Pointes (TdP), and therefore reliable prediction of hERG liability in the early stages of drug design is quite important to reduce the risk of cardiotoxicity-related attritions in the later development stages. In this study, pharmacophore modeling and machine learning approaches were combined to construct classification models to distinguish hERG active from inactive compounds based on a diverse data set. First, an optimal ensemble of pharmacophore hypotheses that had good capability to differentiate hERG active from inactive compounds was identified by the recursive partitioning (RP) approach. Then, the naive Bayesian classification (NBC) and support vector machine (SVM) approaches were employed to construct classification models by integrating multiple important pharmacophore hypotheses. The integrated classification models showed improved predictive capability over any single pharmacophore hypothesis, suggesting that the broad binding polyspecificity of hERG can only be well characterized by multiple pharmacophores. The best SVM model achieved the prediction accuracies of 84.7% for the training set and 82.1% for the external test set. Notably, the accuracies for the hERG blockers and nonblockers in the test set reached 83.6% and 78.2%, respectively. Analysis of significant pharmacophores helps to understand the multimechanisms of action of hERG blockers. We believe that the combination of pharmacophore modeling and SVM is a powerful strategy to develop reliable theoretical models for the prediction of potential hERG liability.
Molecular docking provides a computationally efficient way to predict the atomic structural details of protein-RNA interactions (PRI), but accurate prediction of the three-dimensional structures and binding affinities for PRI is still notoriously difficult, partly due to the unreliability of the existing scoring functions for PRI. MM/PBSA and MM/GBSA are more theoretically rigorous than most scoring functions for protein-RNA docking, but their prediction performance for protein-RNA systems remains unclear. Here, we systemically evaluated the capability of MM/PBSA and MM/GBSA to predict the binding affinities and recognize the near-native binding structures for protein-RNA systems with different solvent models and interior dielectric constants (). For predicting the binding affinities, the predictions given by MM/GBSA based on the minimized structures in explicit solvent and the GB model with = 2 yielded the highest correlation with the experimental data. Moreover, the MM/GBSA calculations based on the minimized structures in implicit solvent and the GB model distinguished the near-native binding structures within the top 10 decoys for 117 out of the 148 protein-RNA systems (79.1%). This performance is better than all docking scoring functions studied here. Therefore, the MM/GBSA rescoring is an efficient way to improve the prediction capability of scoring functions for protein-RNA systems.
BackgroundExosomes derived from tumor cells (TEXs) are involved in both immune suppression, angiogenesis, metastasis and anticancer stimulatory, but the biological characteristics and role of diffuse large B cell lymphoma (DLBCL)-derived exosomes have been less investigated.MethodsExosomes (EXOs) were isolated from OCI-LY3, SU-DHL-16, and Raji cells and biological characteristics of EXOs were investigated using electron microscopy, flow cytometry analysis, and Western blot analysis. The protein expression of EXOs was determined by an antibody array. Next, the communication between EXOs and lymphoma cell, stromal cell, dendritic cells (DCs), and T cells was evaluated. Finally, effect of DLBCL TEXs on tumor growth in vivo was investigated.ResultsWe demonstrated that EXOs derived from DLBCL cell lines displayed malignancy molecules such as c-Myc, Bcl-2, Mcl-1, CD19, and CD20. There was a different protein expression pattern between DLBCL TEXs and Burkitt lymphoma TEXs. DLBCL TEXs were easily captured by DCs and lymphoma cells, and mainly acted as an immunosuppressive mediator, evidenced by induction of apoptosis and upregulation of PD-1 in T cells. Furthermore, the TEXs stimulated not only cell proliferation, migration of stromal cells but also angiogenesis. As a result, the TEXs promoted tumor growth in vivo. On other hand, DLBCL TEXs did not induce apoptosis of DCs. After pulsed with the TEXs, DCs could stimulate clonal expansion of T cells, increase the secretion of IL-6 and TNFα, and decrease the production of immunosuppressive cytokine IL-4 and IL-10. The T cells from tumor bearing mice immunized by TEX were shown to possess superior antilymphoma potency relative to immunization of tumor lysates.ConclusionsThis study provides the framework for novel immunotherapies targeting TEXs in DLBCL.Electronic supplementary materialThe online version of this article (10.1186/s13046-018-0863-7) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.