Droughts, which are characterized by multiple dimensions including frequency, duration, severity, and onset timing, can impact tree stem radial growth profoundly. Different dimensions of drought influence tree stem radial growth independently or jointly, which makes the development of accurate predictions a formidable challenge. Measurement-based tree-ring data have obvious advantages for studying the drought responses of trees. Here, we explored the use of abundant tree-ring records for quantifying regional response patterns to key dimensions of drought. Specifically, we designed a series of regional-scaled "natural experiments," based on 357 tree-ring chronologies from Southwest USA and location-matched monthly water balance anomalies, to reveal how tree-ring responds to each dimension of drought. Our results showed that tree-ring was affected significantly more by the water balance condition in the current hydrological year than that in the prior hydrological year. Within the current hydrological year, increased drought frequency (number of dry months) and duration (maximum number of consecutive dry months) resulted in "cumulative effects" which amplified the impacts of drought on trees and reduced the drought resistance of trees. Drought events that occurred in the pregrowing seasons strongly affected subsequent tree stem radial growth. Both the onset timing and severity of drought increased "legacy effects" on tree stem radial growth, which reduced the drought resilience of trees. These results indicated that the drought impact on trees is a dynamic process: even when the total water deficits are the same, differences among the drought processes could lead to considerably different responses from trees. This study thus provides a conceptual framework and probabilistic patterns of tree-ring growth response to multiple dimensions of drought regimes, which in turn may have a wide range of implications for predictions, uncertainty assessment, and forest management.
Aim: The present study was conducted to define the relationship between the anti-aging effect of ubiquinol-10 supplementation and mitochondrial activation in senescence-accelerated mouse prone 1 (SAMP1) mice. Results: Here, we report that dietary supplementation with ubiquinol-10 prevents age-related decreases in the expression of sirtuin gene family members, which results in the activation of peroxisome proliferator-activated receptor c coactivator 1a (PGC-1a), a major factor that controls mitochondrial biogenesis and respiration, as well as superoxide dismutase 2 (SOD2) and isocitrate dehydrogenase 2 (IDH2), which are major mitochondrial antioxidant enzymes. Ubiquinol-10 supplementation can also increase mitochondrial complex I activity and decrease levels of oxidative stress markers, including protein carbonyls, apurinic/apyrimidinic sites, malondialdehydes, and increase the reduced glutathione/oxidized glutathione ratio. Furthermore, ubiquinol-10 may activate Sirt1 and PGC-1a by increasing cyclic adenosine monophosphate (cAMP) levels that, in turn, activate cAMP response element-binding protein (CREB) and AMP-activated protein kinase (AMPK). Innovation and Conclusion: These results show that ubiquinol-10 may enhance mitochondrial activity by increasing levels of SIRT1, PGC-1a, and SIRT3 that slow the rate of age-related hearing loss and protect against the progression of aging and symptoms of age-related diseases.
Background: Three-dimensional (3D) printing has become an available technology to fabricate customized tissue engineering scaffolds with delicate architecture. This exploratory study aimed to evaluate the potential of a 3D-printed hydroxyapatite-based scaffold as a biomaterial for obtaining guided bone regeneration (GBR) in vivo. Methods: Scaffolds composed of 90% hydroxyapatite and 10% poly(lactic-coglycolic acid) were printed using a microextrusion process to fit 4 mm diameter and 0.5 mm thick through-and-through osseous defects on the mandibular ramus of rats, with unfilled defects serving as controls. Specimens were analyzed for regeneration-associated gene expression on day 7, and micro-computed tomography (micro-CT) and histology assessments were carried out on day 28. Results: The scaffolds were 3.56 ± 0.43 mm (x-axis) and 4.02 ± 0.44 mm (y-axis) in diameter and 0.542 ± 0.035 mm thick (z-axis), with a mean pore size of 0.420 ± 0.028 × 0.328 ± 0.005 mm 2. Most scaffolds fit the defects well. Type I collagen, VEGF, and Cbfa1 were upregulated in the scaffold-treated defects by day 7. By day 28, de novo osteogenesis and scaffold-tissue integration were evident in the scaffold-treated defects, and entire mineralized tissue, as well as newly formed bone, was significantly promoted, as seen in the micro-CT and histologic analyses. Conclusion: The 3D-printed hydroxyapatite-based scaffold showed acceptable dimensional stability and demonstrated favorable osteoregenerative capability that fulfilled the need for GBR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.