The influence of incident laser parameters on sensitivity in matrix-assisted laser desorption/ionization (MALDI) has been investigated using orthogonal-injection time-of-flight (TOF) instruments. A qualitative comparison was first made between the beam profiles obtained with a N(2) laser and a Nd:YAG laser using 2-m long optical fibers. The N(2) laser gives better sensitivity, consistent with a more uniform fluence distribution and therefore better coverage of the N(2) laser profile. Most of the difference disappears when a 30-m long fiber is used or when the fibers are twisted during irradiation to smooth out the fluence distribution. In more systematic measurements, the total integrated ion yield from a single spot (a measure of sensitivity) was found to increase rapidly with fluence to a maximum, and then saturate or decrease slightly. Thus, the optimum sensitivity is achieved at high fluence. For a fluence near threshold, the integrated yield has a steep (cubic) dependence on the spot size, but the yield saturates at higher fluence for smaller spots. The area dependence is much weaker (close to linear) for fluence values above saturation, with the result that the highest integrated yields per unit area are obtained with the smallest spot sizes. The results have particular relevance for imaging MALDI, where sensitivity and spatial resolution are important figures of merit.
Methods to reduce mass shifts caused by space charge with mass-selective axial ejection from a linear quadrupole ion trap are investigated. For axial ejection, dipole excitation is applied to excite ions at q ≈ 0.85. The trapping radiofrequency (rf) voltage is scanned to bring ions of different m/z values into resonance for excitation. In the fringing field at the quadrupole exit, excited ions gain axial kinetic energy, overcoming the trapping potential, and are ejected from the trap. Space charge causes the frequencies of ion oscillation to decrease. Thus, greater rf voltages are required to bring ions into resonance for excitation and ejection, and the ions shift to higher apparent masses in a mass spectrum. At the same time, the peaks broaden, lowering resolution. The effects of injection q value, ejection q value, excitation amplitude, quadrupole dc voltages applied to the electrodes, applying an rf voltage to the exit lens, and scan speed, on mass shifts have been studied experimentally. Most experiments were done with only ions of protonated reserpine (m/z 609.3 and its isotopic peaks) in the trap. Some experiments were done with ions of protonated reserpine and ions of m/z 622 in the trap. In general, the mass shifts are reduced with higher ejection q values, higher excitation amplitudes, with quadrupole dc applied, and at higher scan speeds. The application of quadrupole dc appears to increase the ion cloud temperature, which lowers mass shifts. Thus, a proper choice of operating conditions can reduce, but not eliminate, mass shifts caused by space charge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.