Rutaecarpine attenuates hypertensive cardiac hypertrophy in the rats with abdominal artery constriction (AAC); however, its mechanism of action remains largely unknown. Our previous study indicated that NADPH oxidase 4 (Nox4) promotes angiotensin II (Ang II)‐induced cardiac hypertrophy through the pathway between reactive oxygen species (ROS) and a disintegrin and metalloproteinase‐17 (ADAM17) in primary cardiomyocytes. This research aimed to determine whether the Nox4‐ROS‐ADAM17 pathway is involved in the protective action of rutaecarpine against hypertensive cardiac hypertrophy. AAC‐induced hypertensive rats were adopted to evaluate the role of rutaecarpine in hypertensive cardiac hypertrophy. Western blotting and real‐time PCR were used to detect gene expression. Rutaecarpine inhibited hypertensive cardiac hypertrophy in AAC‐induced hypertensive rats. These findings were confirmed by the results of in vitro experiments that rutaecarpine significantly inhibited Ang II‐induced cardiac hypertrophy in primary cardiomyocytes. Likewise, rutaecarpine significantly suppressed the Nox4‐ROS‐ADAM17 pathway and over‐activation of extracellular signal‐regulated kinase (ERK) 1/2 pathway in the left ventricle of AAC‐induced hypertensive rats and primary cardiomyocytes stimulated with Ang II. The inhibition of Nox4‐ROS‐ADAM17 pathway and over‐activation of ERK1/2 might be associated with the beneficial role of rutaecarpine in hypertensive cardiac hypertrophy, thus providing additional evidence for preventing hypertensive cardiac hypertrophy with rutaecarpine.
Quercetin and crocin are the main active constituents of Eucommia and Gardenia species, respectively. This study was conducted to explore the effects of quercetin and crocin on fat reduction and renal fibrosis and the relationship of these compounds with autophagy. First, a model of high-fat diet- and streptozotocin-induced type 2 diabetes was established and then subjected model animals to 8 weeks of metformin, quercetin and crocin gavage. Then, a high glucose-induced rat mesangial cells (RMCs) model was established, and these cells were cocultured with quercetin and crocin. The results showed that quercetin and crocin can decrease fasting blood glucose levels, reduce fat accumulation in the liver, alleviate renal fibrosis, and reduce blood lipid levels. Quercetin and crocin increased autophagy-related protein (LC3, Atg5, Beclin-1 and p-AMPK) levels in the liver and decreased autophagy-related protein (LC3, Atg5, Beclin-1 and p-AMPK) levels in the kidneys. Moreover, quercetin and crocin inhibited the excessive proliferation of RMCs induced by high-glucose (HG) conditions, decreased autophagy-related protein (LC3, Atg5, Beclin-1 and p-AMPK) levels, and decreased TGF-β1 expression. Importantly, cotreatment with quercetin and crocin had a more significant effect than treatment with either compound alone. These results suggest that combined administration of quercetin and crocin can more significantly reduce blood glucose/lipid levels and improve renal fibrosis than administration of either compound alone and that AMPK-dependent autophagy might be involved in this process. Eucommia ulmoides Oliv. and Gardenia could be developed as drugs for Type 2 diabetes treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.